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Abstract

Motivated by the idea of b-metric-like spaces and extended b-metric spaces, the idea

of extended b-metric-like spaces is introduced in this dissertation. The idea of TgF -

contraction is introduced by Yu et al. recently. Authors presented some common

fixed point results on such mappings. Meanwhile extended b-metric spaces are

introduced by Kamran et al. with certain fixed point results. Combining the

both ideas a theorem on common fixed point is proved on extended b-metric-like

space. These results generalize many already existing results. An example is also

provided to validate the result.
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Chapter 1

Introduction

1.1 Background

Mathematics has an important role in scientific knowledge that is why it is called

mother of all the other sciences. Mathematics has a lot of applications for hu-

mans in every field of life. Mathematics is divided into many branches and each

branch has its own significance. One of the important branches of mathematics is

known as functional analysis. In the early decades of twentieth century, functional

analysis is originated from classical analysis. Mainly, vector space and different

operators are focused in functional analysis. It is also related to topology, abstract

linear algebra and modern geometry. It is originated from approximation theory,

calculus of variations, ordinary and partial linear differential equations and linear

integral equations has great impact on the development of modern ideas. At its

earliest stage, it was used to solve differential equations and has many wide ap-

plications for non-linear problems. Recently, functional analytic methods are very

useful in different areas of mathematics.

In functional analysis, fixed point theory is a valuable and dominant theory. Fixed

point theory provides sufficient conditions for the existence of solution of different

problems. The concept of fixed pointitheory has a lot of applications ini different

fields of science, such as in the area of numerical analysis, polynomial interpola-

tion, error estimation, optimization theory, mathematical economics, variational

1



Introduction 2

inequalities, approximation theory and finite difference methods.

Poincare [1] was the first mathematician who studied the field of fixed point the-

ory in 1886 and substantiate various fixed point results. Later on Brouwer [2]

considered the equation T (η) = η and established the solution of this equation

by proving a fixed point theorem in 1910. He also worked to prove fixed point

results for the shapes like square and a sphere. In 1922, a notable mathematician

Stephan Banach [3] demonstrated a significant fixed point result in the field of

functional analysis acknowledged as Banach contraction principle. This result is

declared to be the most fundamental in the field of fixed point theory. The two

remarkable applications come from this principle. The first one is that it guar-

antees theiexistence and uniquenessiof fixedipoint of a contractionimapping. The

second and the very emotive one is that it developed an approach to determine

the fixed point of a contractive mapping. This principle occupies a significant

part in the field of functional analysis. Afterwards, Banach contraction principle

has been extending in various directions. Different mathematicians used different

approaches to extend this principle, by either replacing the contraction condition

or taking the different spaces [4–7].

Nadler [8] also extended the Banachicontraction principle from singleivalued to

multivalued contraction mappings. On the other hand few authors used different

spaces like pseudo metric space [9], metric like space [10], partially ordered space

[11]. The b-metric space is one of the interesting generalization of the metric space

which was initiated by Bakhtin [12] and Czerwik [13]. They established the idea

of b-metric space and then used the same idea to set up some fixed point theorems

for generalizing the Banach contraction principle.

Huang [14] introduce cone metric spaces and prove some fixed point theorems

of contractive mappings on cone metric spaces. Many fixed point theorems are

generalized on cone metric spaces [15–17]. An interesting generalization of metric

space is established by Ma et al. [18] known as C∗ valued metric space. Many

researcher extended a number of fixed point results in this metric [19–21].

In 2013, on the basis of the concepts of b-metric space, partial mretric space and

metric like space, Alghamdi et al. [22] introduced b-metric-like spaces. By pro-

viding some supportive results, authors proved fixed point results in expansive
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mappings. They also worked on the b-metric like spaces which are partially or-

dered and proved fixed point theorems. In 2014, Zhu et al. [23] introducedithe

notion of qausi b-metric-likeispaces. He also gives the criteria for the convergence

and completeness, and proved some results showing fixedipoints in qausi b-metric-

likeispace. While in 2015, Chen et al. [24] also worked on b-metric like space and

he generalizes many related results.

In 2018 Yu et al. [25] introduce a newiconcept of TgF -contractioniin b-metric-

likeispaces andiinvestigate someifixed point theorems aboutisuch contraction. Con-

currentlyiKamran et al. [26] introduceithe concept ofiextended b-metricispace

and establishisome fixed pointitheorems for self-mappingsidefined on suchispaces.

Many researcher worked on this new notation and extended already existing results

in literature [27–29]. In this dissertation, the main focus is to work on b-metric like

space its examples, completeness, convergence and common fixed pointitheorems

for TgF -contractionsiin b-metric-likeispaces. The detailed review of article “Com-

mon fixed point theorems for TgF -contractions in b-metric-like spaces” Yu et al. [25]

is presented. By using concept of b-metric like spaces, extended b-metric spaces and

TgF -contractions in b-metric-like spaces the definitions of extended b-metric like

spaces have been introduced in this thesis. The concept of TgF -contractions in ex-

tended b-metric-like spaces is established. A result regarding common fixedipoint

theorems about suchicontractions in extended b-metric-likeispaces is provided with

an example. This result generalize the result of Yu et al. [25].

Following are the details of work, which have been done this thesis.

1. Chapter 2:

This chapter consists of brief literature review of metric fixed point theory.

Focus is on basic notations, definitions and results regarding metric spaces.

This chapter includes seven sections. First section contains the definitions

and examples of metric spaces. Second sections include some mappings on

metric space. Section third to sixth include the definitions and examples of

1.2 Thesis Layout
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different spaces. The last section contain Banach contraction principle and

its generalizations on different spaces.

2. Chapter 3:

This chapter contains the detailed review of article “Common fixed point

theorems for TgF -contractions in b-metric-like spaces” by Yu et al. [25].

3. Chapter 4:

In this chapter motivated byithe idea of extended b-metricispaces the def-

inition ofiextended b-metric likeispace was introduced. TgF -contractioniin

extended b-metric-likeispace is also introduced. Some fixed pointitheorems

for TgF -contractionion extended b-metric-like space is presented which gen-

eralize many already existing results.

4. Chapter 5:

The conclusion is given in this chapter.



Chapter 2

Preliminaries

In this chapter we will recall some initiatory definitions and examples from the

evaluation of extended b-metric-like spaces. The main intent of this chapteriis

toipresent the elementary results, definitionsiand examples that willibe used in

theisubsequentichapters.

2.1 Metric Space

Functional analysis is an important branch of mathematical analysis which is orig-

inated from classical analysis. Its development started about more than a century

but now a days functional analyticimethods are used in variousifields of applied

mathematicsiand other sciences.

In abstractiapproach one usuallyistart from a setiof elements satisfyingicertain ax-

ioms. Theitheory then construct ofilogical consequencesiwhich results fromiaxioms

and derivedias therefore once or foriall. The idea of using abstractispaces in

aisystematic manners goesiback to M. Frechet (1906) andiis justifiediby its enor-

mous use in different fields. In this chapteriwe consider metricispaces, which are

fundamental inifunctional analysis becauseithey have a similar role to realiline R

inicalculus . Inifact it generalizes R and provide aibasis for uniform treatment of

importantiproblems in various branches ofianalysis.

The concept of metric space and related ideas are discussed in the upcoming sec-

5
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tion along with suitable examples.

Definition 2.1.1. Metric Space

“A metric space is a pair (X, d), where X is a non-empty set and d is a metric on

X, i.e., a function defined on X ×X such that for all x, y, z ∈ X we have:

(M1) d is real-valued, finite and nonnegative;

(M2) d(x, y) = 0 if and only if x = y;

(M3) d(x, y) = d(y, x);

(M4) d(x, y) ≤ d(x, z) + d(z, y);

The pair (X, d) is called metric space on X.”[30]

Example 2.1.1.

Let X = C[a, b] be setiof all real valuedicontinuous functionion interval [a, b]. A

mapping d : X ×X → R given by

d(α, β) = max
t∈[a,b]

|α(t), β(t)| ∀ α, β ∈ X,

then d is imetricion X.

Example 2.1.2.

Let X beiset of allibounded sequences oficomplex numbers; i.e everyielement of X

isia complexisequence

x = (α1, α2, α3, .........) briefly x = (αj)

such that foriall j = 1, 2, 3.... we have |αj| ≤ cx where cx is a realinumber. we

defineia metric d : X ×X → R by

d(x, y) = sup
j∈N

|αj − βj|

where y = (βj) ∈ X and sup denotes the supremum (the least upper bound) with

N = {1, 2, 3, ......}. The metric spaceithus obtained isigenerally denotediby l∞.

Example 2.1.3.

Consider a set Y which is non empty, it can be made a metric space (Y, d0), where

d0 : Y × Y → R is a function
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d0(η1, η2) =

 0 η1 = η2

1 η1 6= η2

(M1), (M2)and (M3) are satisfied obviously.

(M4.) In order to prove the rectangular inequality

i. If η1 = η2 = η3, then d0(η1, η2) = 0, d0(η1, η3) = 0, d0(η2, η3) = 0

⇒ d0(η1, η3) = d0(η1, η2) + d0(η2, η3). (2.1)

ii. If η1 6= η2 = η3, then d0(η1, η2) = 1, d0(η1, η3) = 1, d0(η2, η3) = 0

⇒ d0(η1, η3) = d0(η1, η2) + d0(η2, η3). (2.2)

iii. If η1 = η2 6= η3, then d0(η1, η2) = 0, d0(η1, η3) = 1, d0(η2, η3) = 1

⇒ d0(η1, η3) = d0(η1, η2) + d0(η2, η3). (2.3)

iv. If η1 6= η2 6= η3, then d0(η1, η2) = 1, d0(η1, η3) = 1, d0(η2, η3) = 1

⇒ d0(η1, η3) ≤ d0(η1, η2) + d0(η2, η3). (2.4)

From Equations (2.1), (2.2), (2.3) and (2.4), we conclude that

⇒ d0(η1, η3) ≤ d0(η1, η2) + d0(η2, η3). ∀ η1, η2, η3 ∈ Y.

Hence d0 is a metricion Y . It is calledidiscrete metric and has special properties.

In fact, for each positive integer m, dm : Y × Y → R is a function

dm(η1, η2) =

 0 η1 = η2

m η1 6= η2,m ∈ Z+

is a discrete metric on Y . Also we can call it generalized discrete metric.
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Definition 2.1.2. Open and Closed Ball

“let (X, d) be a metric space the set

S(x◦, r) = {x ∈ X : d(x◦, x) < r}, where r > 0

is called an open ball of radius r and centre x◦.

The set

S(x◦, r) = {x ∈ X : d(x◦, x) ≤ r}, where r > 0

is called closed ball of radius r and centre x◦.”[31]

Definition 2.1.3. Open and Closed Set

“A subset M of a metric space X is set to be open if it contains a ball about each

of its point. A subset K of x is said to be closed if its complement is open, that

is, KC = X −K is open.”[30]

Example 2.1.4.

The closed interval [1,2] of real numbers R is a closed set.

Example 2.1.5.

Consider (X, d) be a metricispace theiset

S(x◦, r
′) = {x ∈ X : d(x◦, x) < r′}, where r′ > 0

is an openiset.

S(x◦, r′) = {x ∈ X : d(x◦, x) ≤ r′}, where r′ > 0

is a closediset.

Example 2.1.6.

Let (X, d) be a metricispace then each singleton set {u} is a closed subset of M .

Hence every finite set is closed.



Preliminaries 9

Example 2.1.7.

Consider X = R2, define d : X ×X → R by

d(x, y) =
√

(x1 − x2)2 + (y1 − y2)2

then the set

S ′ = {(x, y) ∈ X : x2 + y2 < 1}

is and open set.

Definition 2.1.4. Neighbourhood

“Suppose that (X, d) is a metric space. We call a set U a neighbourhood of x ∈ X

if there exists an open set V ⊆ U with x ∈ V .”[32]

Definition 2.1.5. Convergence of a Sequence

“Suppose (xn), n ∈ N is a sequence in a metric space (X, d). We say x0 is a limit

of (xn) if for every neighbourhood U of x0 there exists n0 ∈ N such that xn ∈ U

for all n ≥ n0. We write

x0 = lim
n→∞

xn or xn → x as n→∞.

Definition 2.1.6. Cauchy Sequence

“A sequence (xn) in a metric space (X, d) is said to be Cauchy if for every ε > 0

there is an N = N(ε) such that

d(xm, xn) < ε, for every m,n > N. ”[30]

Definition 2.1.7. Completeness

“The space (X, d) is said to be complete if every Cauchy sequence in X converges

in X.”[30]

Example 2.1.8.

Consider X = R, and consider a sequence {αn} =
1

n
, with

d(α, β) = |α− β|,

If the sequence has a limit we say it is convergent, otherwise we say it is divergent

sequence.”[32]
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then {αn} is convergent and lim
n→∞

d(αn, 0) = 0. Now consider ε > 0, choose N >
2

ε
,

then for any n,m > N , ∣∣∣∣ 1n − 1

m

∣∣∣∣ ≤ 1

n
+

1

m

<
1

N
+

1

N

<
ε

2
+
ε

2

= ε.

Therefore {αn} is a Cauchy sequence.

Example 2.1.9.

Consider X = R, and consider a sequence {αn} = n2−1
n2 , with

d(α, β) = |α− β|.

Consider ε > 0, choose N >
√

2
ε
, then for any n,m > N ,

∣∣∣∣n2 − 1

n2
− m2 − 1

m2

∣∣∣∣ ≤ 1

n2
+

1

m2

<
1

N2
+

1

N2

=
2

N2

< ε.

Therefore {αn} is a Cauchy sequence.

Example 2.1.10.

(i) The closed interval [0, 1] in R is a complete metric space with usual metric on

R.

(ii) Every finite dimensional metric space is complete.

(iii) Closed subspace of a complete space is complete.

Remark 2.1.1.

Every convergent sequence is Cauchy sequence but converse is not true.
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Definition 2.1.8. Topology

“A topology on a set X in a family F of subset of X which satisfies the following

axioms:

(1) φ and X are in F.

(2) The union of any sub collection of F is a member of F.

(3) The intersection of any finite sub collection of F is a member of F.

Together the pair (X,F) is called a topological space.”[33]

Example 2.1.11.

let X = {0, 1} then if we let F = {φ, {0} , {1} , X, } then (X,F) is a topological

space. This is true because (1) can be verified by inspection, (2) and (3) required

that certain subset of X are elements of F, but if we can choose F to be all subset

of F, which make (2) and (3) hold.

Definition 2.1.9. The Metric Topology

“The metric topology on a metric space M is the topology obtained by taking as

open sets the collection of all sets F in M which have the property S ∈ F provided

each point x ∈ S is the center of some open ball U(x, r) (for r > 0), which also

lies in S.”[33]

Example 2.1.12.

Consider X = R with metric d = |x − y|, we can generate collection of open sets

as

τ = {U ⊆ R : ∀ x ∈ U,∃ (x− ε, x+ ε) ⊂ U},

then τ satisfy all the conditions of topology. so, τ is called metric topology.

2.2 Some Mapping on Metric Space

This section addresses some important mappings on metric spaces. These map-

pings play a fundamental role in the field of fixed point theory.

Definition 2.2.1. Continuous Mapping

“ Let (X, dX) and (Y, dY ) be metric spaces and A ⊆ X. A function f : A→ Y is
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said to be continuous at a ∈ A, if for every ε > 0, there exists some δ > 0 such

that

dY (f(x), f(a)) < ε whenever x ∈ A and dX(x, a) < δ. (2.5)

If f is continuous at every point of A, then it is said to be continuous on A.”[31]

Remark 2.2.1.

(i) If oneipositive number δ satisfiesithis condition (2.5), thenievery positiveinumber

δ1 < δ alsoisatisfies it. Thisiis obvious becauseiwhenever x ∈ A and dx(x, a) < δ1,

itiis also trueithat x ∈ A and dx(x, a) < δ1. Therefore,isuch ainumber δ is farifrom

being iunique.

(ii) If a isia limitipoint of A and {xn} is aisequence ofipoints of A such that xn → a,

it followsifrom theicontinuity of f at a that f(xn)→ f(a).

Example 2.2.1.

Consider X = R and aimapping T : X → X definedion a usual metricispace (X, d)

asifollows:

T (x) = x5 where x ∈ X,

then T is aicontinuous mapping.

Example 2.2.2.

Consider X = R and (X, d) be a metric space and I : X → X be an identity

function, then I is continuous on R.

Example 2.2.3.

Consider (U, d0) be a discrete metric space. Then any map T : U → V is continu-

ous. For every ε > 0 we choose δ = 1. Then

B(x, δ) = B(x, 1) = {x}

foriall x ∈ U and theicondition T (x) ∈ B(T (x), ε) is obviously satisfied.

Definition 2.2.2. Lipschitzian Mapping

“Let (X, d) be a metric space. A mapping T : X → X is said to be Lipschitzian

if there exist a constant α ≥ 0 with
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d (T (x), T (y)) ≤ αd (x, y) for all x, y ∈ X.

Notice that a Lipschitzian map is necessarily continuous. The smallest α for which

above inequality holds is said to be Lipschitz constant for T and is denoted by

L.”[34]

Example 2.2.4.

Consider set of real numbers R with usual metric d(l1, l2) = |l1 − l2| , ∀ l1, l2 ∈ R.

A mapping T : R→ R define by T (l) = 2l, then

d(T (l1) , T (l2)) = d(2l1, 2l2)

= |2l1 − 2l2|

= 2|l1 − l2|

= 2d(l1, l2).

So, T is a Lipschitzian mapping and its Lipschitz constantiis 2.

Definition 2.2.3. Contraction Mapping

“Let X = (X, d) be a metric space. A mapping T : X → X is called a contraction

on X if there exist a positive real number α < 1 such that for all x, y ∈ X

d (T (x), T (y)) ≤ α d (x, y)

Geometrically this means that any point x and y has images that are closer to-

gether than those points x and y; more precisely, the ratio
d (T (x), T (y))

d (x, y)
does not

exceed a constant α which is strictly less than 1.”[30]

Example 2.2.5.

Consider X = [0, 1] with usualimetric. Aimapping T : X → X define by

T (x) =
1

2 + x
.

Then

d (T (x) , T (y)) = d

(
1

2 + x
,

1

2 + y

)
=

∣∣∣∣ 1

2 + x
− 1

2 + y

∣∣∣∣
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=

∣∣∣∣ x− y
(2 + x)(2 + y)

∣∣∣∣
=

1

|(2 + x)(2 + y)|
|x− y|

=
1

(2 + x)(2 + y)
d(x, y)

≤ 1

4
d(x, y)

d (T (x) , T (y)) ≤ i
1

4
d(x, y),

hence, T isicontractionimapping withicontractioniconstant α = 1
4
.

Example 2.2.6.

Consider (X, d) be a metricispace and

d(φ, ψ) =| φ− ψ |,

then define a mapping T : X → X by

T (φ) =
φ

5
+ 3

d(Tφ, Tψ) =

∣∣∣∣(φ5 + 3

)
−
(
ψ

5
+ 3

)∣∣∣∣
=

∣∣∣∣φ5 − ψ

5

∣∣∣∣
=

1

5
|φ− ψ|

⇒ α =
1

5
< 1,

then T is a contraction with α =
1

5
< 1.

Definition 2.2.4. Contractive Mapping

“Consider (X, d) be a metric space and F be a self map on X then, F is called a

contractive mapping if, for all α, β ∈ X

d(F (α), F (β)) < d(α, β)
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where α 6= β.”[34]

Example 2.2.7.

Let X = [1,∞) with usual metric d. A mapping T : X → X define by T (u) =
1

u
,

then

d(T (u) , T (v)) = d

(
1

u
,

1

v

)
=

∣∣∣∣1u − 1

v

∣∣∣∣
=

∣∣∣∣v − uuv

∣∣∣∣
=

∣∣∣∣u− vuv

∣∣∣∣
=

∣∣∣∣ 1

uv

∣∣∣∣ |u− v|
< |u− v|

= d(u, v)

⇒ d(T (u) , T (v)) < d(u, v) ∀ u, v ∈ X,

which implies T is contractive mapping.

Example 2.2.8.

Consider X = R and (X, d) be usual metric space. Let T be a self-mapping on X

defined by

T (α) = α +
1

α
, ∀ α ∈ X, (2.6)

then T is contractive but not a contraction.

Definition 2.2.5. Non-Expansive Mapping

“Let T : X → X be a mapping on metric space (X, d) into itself. We call T a

non-expansive if,

d(T (α), T (β)) ≤ d(α, β)

for all α, β ∈ X.”[35]
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Example 2.2.9.

Let X = R with usual metric. A mapping T : X → X define by T (w) = w. Then

d(T (w1) , T (w2)) = d(w1, w2)

= |w1 − w2|

= d(w1, w2)

⇒ d(T (w1) , T (w2)) = d(w1, w2) ∀ w1, w2 ∈ X,

which implies T is non-expansive mapping.

Remark 2.2.2.

Contraction ⇒ Contractive ⇒ Non-expansive ⇒ Lipschitzian.

In past years many generalizations of metric space are introduced and discussed.

All these ideas intrigued many mathematicians to generalize various fixed point

theorems. Some very important generalizations of metric spaces will appears in

upcoming sections.

2.3 b-metric Space

The notion of b-metric space was firstly presented by Bakhtin [12] in 1989. Also

in 1993, Czerwik [13] gave its formal definition. Another mathematician Bourbaki

[36] also worked on this idea. This section includes the definition and examples of

the said space.

Definition 2.3.1. b-metric Space

“Let X be a nonempty set and dβ : X ×X → [0,∞) be a function satisfying the

following conditions:

dβ1 : dβ(x, y) = 0 if and only if x = y.

dβ2 : dβ(x, y) = dβ(y, x) for all x, y ∈ X.

dβ3 : dβ(x, y) ≤ s[dβ(x, z) + dβ(z, y)] for all x, y, z ∈ X, where s ≥ 1.
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The function dβ is called a dβ-metric and the space (X, dβ) is called a dβ-metric

space, in short, bMS.”[13]

Remark 2.3.1.

(i) For s = 1 the above definition reduce to the definition of metric space.

(ii) Inigeneral b-metric isinot a continuousifunction.

Example 2.3.1.

Let Y = [0, 1] and dβ : Y × Y → [0,∞) be defined by

dβ(y1, y2) = (y1 − y2)2 for all y1, y2 ∈ Y

then (X, dβ) is a b−metric space with s = 2.

Example 2.3.2.

Let (X, d) be a metric space. Then for a real number m > 1. we define a function

dβ : X ×X → R+ by

dβ(α, β) = (d(α, β))m,

this gives dβ as a b-metric space with its coefficient κ = 2m−1.

For proof we will use the inequality

(
α + β

2

)m
≤ αm + βm

2

(α + β)m

2m
≤ αm + βm

2

(α + β)m ≤ 2m−1 (αm + βm) .

dβ1, dβ2 are trivially satisfied, to prove dβ3 we proceed as:

since for every α, β, γ ∈ X we get

dβ (α, γ) = (d (α, γ))m

≤ [dβ (α, β) + dβ (β, γ)]m

≤ 2m−1 [d (α, β)m + d (β, γ)m]

≤ 2m−1 [dβ (α, β) + dβ (β, γ)] .
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Hence dβ isia b-metricispace withicoefficient 2m−1.

Definition 2.3.2. Convergent, Cauchy Sequence and Completeness

“Let (Y, dβ) be a b-metric space. A sequence {αn} in Y is said to be:

(i) Cauchy if and only if

lim
m,n→∞

dβ(αm, αn) = 0 as m,n→∞.

(ii) Convergent if and only if there exist α ∈ Y such that

dβ(αn, α) = 0 as n→∞,

and we write

lim
n→∞

αn = α.

2.4 Extended b-metric Space

This section is dedicated to the notion of extended b-metric space. Kamran et al.

[26] introduced a newitype of generalized b-metricispace and termediit asiextended

b-metricispace.

Definition 2.4.1. Extended b-metric Space

“LetX be a nonempty set and θ : X×X → [1,∞). A function dθ : X×X → [0,∞)

is called an extended b-metric if, for all x, y, z ∈ X, it satisfies

(dθ1) : dθ(x, y) = 0 iff x = y;

(dθ2) : dθ(x, y) = dθ(y, x);

(dθ3) : dθ(x, y) ≤ θ(x, y) [dθ(x, z) + dθ(z, y)].

The pair (X, dθ) is called an extended b-metric space, in short extended-bMS.”[26]

(iii). The b-metric space (Y, dβ) is complete if every Cauchy sequence is convergent

in dβ.”[26]
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Remark 2.4.1.

(i) If θ(x, y) = s for s ≥ 1, theniwe obtain theidefinition of b-metricispace.

(ii) Further if θ(x, y) = 1, then we obtain the definition of metric space.

Example 2.4.1.

Let Y = [0, 1]. Define θ : Y × Y → [1,∞) as,

θ(y1, y2) =
y1 + y2 + 1

y1 + y2
.

Also introduce dθ : Y × Y → [0,∞) as

dθ(y1, y2) =


1

y1y2
∀ y1, y2 ∈ (0, 1], y1 6= y2,

0 ∀ y1, y2 ∈ [0, 1], y1 = y2

with

dθ(y1, 0) = dθ(0, y1) =
1

y1
∀ y1 ∈ (0, 1],

then (Y, dθ) is an extended b-metric space.

Definition 2.4.2. Convergent, Cauchy Sequence and Completeness

“Let (X, dθ) be an extended b-metric space.

(i) A sequence {xn} in X is said to converge to x ∈ X, if for every ε > 0 there

exists N = N(ε) ∈ N such that

dθ(xn, x) < ε

for all n ≥ N . In this case, we write limn→∞ xn = x.

(ii) A sequence {xn} in X is said to be Cauchy, if for every ε > 0 there exists

N = N(ε) ∈ N such that

dθ(xm, xn) < ε

for all m,n ≥ N .

An extended b-metric space (X, dθ) is complete if every Cauchy sequence in X is

convergent. Note that, in general a b-metric is not a continuous functional and

thus so is an extended b-metric.”[26]
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2.5 Partial Metric Space

This section provides another generalization of metric space known as Partial

metric space. In 1980, the idea of Partial metric space is presented by Steve

Matthews [37]. Matthews was working in the field of computer science. For his

studies, he had to encounter the self distances which are non-zero. Matthews gave

a new idea of metric space in which the self distances are non-zero. His work was

first published in 1994. This section includes the definition and examples of partial

metric space.

Definition 2.5.1. Partial Metric Space

“A partial metric on a set X is a function ρ : X × X → R+ such that for all

x, y, z ∈ X :

(ρ1) x = y ⇔ ρ(x, x) = ρ(x, y) = ρ(y, y);

(ρ2) ρ(x, x) ≤ ρ(x, y);

(ρ3) ρ(x, y) = ρ(y, x);

(ρ4) ρ(x, z) ≤ ρ(x, y) + ρ(y, z)− ρ(y, y).

The space (X, ρ) is a partial metric space.”[38]

Example 2.5.1.

Consider X = R+ define ρ : X ×X → R+ by

ρ(α, β) = max(α, β) ∀ α, β ∈ R+,

then (R+, ρ) is a partial metric space.

Example 2.5.2.

Let Y denotes the set of all intervals [α, β], for any real numbers α ≤ β. Let

ρ : Y × Y → [0,∞) be function such that

ρ ([α1, β1] , [α2, β2]) = max(β1, β2)−min(α1, α2),

then (Y, ρ) is partial metric space.

Definition 2.5.2. Convergent, Cauchy Sequence and Completeness

“Let (Y, ρ) be a partial metric space.
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(i). A sequence {αn} in a partial metric space (Y, ρ) converges to a point α ∈ Y

if and only if

ρ(α, α) = lim
n→∞

ρ(α, αn).

(ii). A sequence {αn} in a partial metric space (Y, ρ) is called a Cauchy sequence

lim
m,n→∞

ρ(αm, αn),

exist.

(iii). A partial metric space (Y, ρ) is called complete if and only if every Cauchy

sequence {αn} in Y converges to a point α ∈ Y such that

ρ(α, α) = lim
m,n→∞

ρ(αm, αn).”[39]

2.6 Metric Like Space

The generalized form of partial metric space is metric like space. In 2012, the idea

of metric like space was presented by Amini-Harandi [10]. This section includes

the definitions and examples of metric like space.

Definition 2.6.1. Metric Like Space

“A mapping σ : X×X → R+, where X is a nonempty set, is said to be metric-like

on X if for any x, y, z ∈ X, the following three conditions hold true:

(σ1) σ(x, y) = 0⇒ x = y;

(σ2) σ(x, y) = σ(y, x);

(σ3) σ(x, z) ≤ σ(x, y) + σ(y, z).

The pair (X, σ) is called a metric-like space. A metric-like on X satisfies all of the

conditions of a metric except that σ(x, x) may be positive for x ∈ X.”[10]

Remark 2.6.1.

Everyipartial metricispace is a metric-likeispace but not conversely inigeneral.

Example 2.6.1.

Let Y = {0, 1}, and let
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σ(α, β) =

2, if α = β = 0,

1, otherwise,

then (Y, σ) is aimetric-likeispace, but since σ(0, 0) � σ(0, 1), hence (Y, σ) isinot a

partial metricispace.

Example 2.6.2.

Consider the set X = [0,∞), and σ : X ×X → R by

σ(a1, a2) = max {a1, a2},

we claim that σ is a metric-like space as:

(σ1)

σ(a1, a2) = max {a1, a2} = 0

⇒ a1 = a2 = 0

If the maximum is 0, then the other values of this function should must be less

than 0, which is not possible due to the given domain X = [0,∞). So, the other

values will also be 0.

(σ2)

σ(a1, a2) = max {a1, a2} = max {a2, a1} = σ(a2, a1)

(σ3)

σ(a1, a3) = max {a1, a3}

≤ max {a1, a2, a3}

≤ max {a1, a2}+ max {a2, a3}

So,

σ(a1, a3) ≤ σ(a1, a2) + σ(a2, a3)

Definition 2.6.2. Convergent, Cauchy Sequence and Completeness

“A sequence {αn} in a metric-like space (Y, σ) converges to a point α ∈ Y if and
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only if

lim
n→+∞

σ(αn, α) = σ(α, α).

A sequence {αn} of elements of Y is called σ-Cauchy if the limit lim
m,n→+∞

σ(αm, αn)

exists and is finite.

The metric-like space (Y, σ) is called complete if for each σ-Cauchy sequence {αn},

there is some α ∈ Y such that

lim
n→+∞

σ(αn, α) = σ(α, α) = lim
m,n→+∞

σ(αm, αn).” [10]

2.7 Banach Contraction Principle (BCP) and its

Generalizations

Stefan Banach proved Banach contraction principle (BCP) in 1922. BCP is known

to be one of theifundamental outcomes of fixed pointitheory. TheiBanach contrac-

tion principle (BCP) provides us with a unique fixed point. Fixed point is a useful

tool in mathematics which can be used to prove the existence of solution of a differ-

ential equation, integral equation and eigenvalue equation. Fixed point theorems

play an important role in both pure and applied mathematics. Present section is

providing the definition and examples of fixed point and some classical fixed point

results.

Definition 2.7.1. Fixed Point

“A fixed point of a mapping T : X → X of a set X into itself is an x ∈ X which

is mapped onto itself, that is,

Tx = x,

the image coincides with x.

Geometrically for a real valued function the fixed point of a mapping y = f(x) are

the points of intersection of graph of y = f(x) and line y = x. For example the

following graph shows the points of intersection of y = x3 and y = x.
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Figure 2.1: Three fixed points

The above graph represents a function having three fixed points.”[30]

Example 2.7.1.

Consider S = R and S : R→ R be a mapping defined as

S(s) =
s

4
+ 3.

S has a unique fixed point s = 4.

Figure 2.2: One fixed point

Example 2.7.2.

Consider S = R and S : R→ R be a mapping defined as

S(s) = s+ 3,



Preliminaries 25

S has no fixed point.

Figure 2.3: No fixed point

Definition 2.7.2 (Weakly Compatible, Coincidence, Point of Coincidence

and Common Fixed Point).

“Let Y be ainonempty set, g and h be self-mappingsion y and

B(g, h) = {y ∈ Y : g(y) = h(y)}.

The pair g and h are called weakly compatible if

g(hy) = h(gy), for all y ∈ B(g, h).

Furthermore u = g(y) = h(y) for some y ∈ Y , then y is called coincidence of g

and h, and u is called point of coincidence of g and h. If y = u, then u is called

the common fixed point of g and h.”[40]

Example 2.7.3.

Let Y = R define g, h : Y → Y by

g(y) = 2y + 1 , h(y) = 3y + 1

for y = 0 ∈ Y ⇒ g(y) = h(y) = 1 = u ⇒ y = 0 is coincidence of g and h, and

u = 1 is point of coincidence of g and h.
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Example 2.7.4.

Let Y = [0, 1] define g, h : Y → Y by

g(y) =
y2

16
, h(y) =

y

4

for y = 0 ∈ Y ⇒ g(y) = h(y) = 0 = u, also g(hy) = h(gy) = 0

g, h are weakly compatible, and u = 0 is point of coincidence of g and h.

As y = u = 0⇒ 0 is common fixed point of g and h.

Theorem 2.7.3 Banach Contraction Principle

“Consider a metric space X = (X, d), where X 6= ∅. Suppose that X is a complete

and let T : X → X be a contraction on X. Then T has precisely one fixed

point.”[30]

Example 2.7.5.

Consider the metric space (R, d) where d is the usual metric, define as

d(α, β) = |α− β|.

The function f : R→ R is define as

f(α) =
α

a
+ b

is a contraction if a > 1. In this specific case we can find a fixed point, since a

fixed point means that f(α) = α, we want α =
α

a
+ b. Solving for α gives us

α =
ab

a− 1

Example 2.7.6.

Consider a mapping g :

(
0,

1

4

)
→
(

0,
1

4

)
where g(α) = α2 is a contraction with

respect to the usual metric and has no fixed point. Infact,

g(α) = α⇒ α2 = α⇒ α2 − α = 0,

⇒ α(α− 1) = 0⇒ α = 0, 1.



Preliminaries 27

But both 0, 1 /∈
(

0,
1

4

)
.

Definition 2.7.4. Compact Metric Space

“A metric space X is said to be compact if every sequence in X has a convergent

subsequence. A subset M of X is said to be compact if M is compact subspace of

X, that is, if every sequence in M has a convergent subsequence whose limit is an

element of M .”[30]

Edelstein [41] established the following fixed point result, popularly named as

Edelstein theorem.

Theorem 2.7.5

“Let (X, d) be a compact metric space, and let T be a mapping on X. Assume

d(Tx, Ty) < d(x, y) for all x, y ∈ X

with x 6= y. Then T has a unique fixed point.”[41]

In 1992 Matthews [37] establishedithe following fixedipoint result on partialimetric

space.

Theorem 2.7.6 (The Partial Metric Contraction Mapping Theorem)

“For each complete partial metric ρ : X2 → R, and for each function f : X → X

such that

∃ 0 ≤ c < 1 for all x, y ∈ X,

ρ(f(x), f(y)) ≤ c.ρ(x, y)

then, there exist a unique a ∈ X, such that

a = f(a), and ρ(a, a) = 0.” [37]

Czerwik [13] established the following fixed point result on b-metric space in 1993.

Theorem 2.7.7 (Extension of BCP on b-metric Space)

“Let (X, dβ) be a complete b-metric space with constant s ≥ 1 and suppose that

T : X → X satisfies

dβ(Tx, Ty) ≤ φ(dβ(x, y)),
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for all x, y ∈ X, where φ : [0,∞)→ [0,∞) is increasing and

lim
n→∞

φn(t) = 0,

for each t ≥ 0, then T has a unique fixed point x∗ ∈ X and

lim
n→∞

T n(x) = x∗,

for each x ∈ X.”[13]

In 2017 Kamran et. al [26] established the following fixed point result on extended

b-metric Space.

Theorem 2.7.8 (Extension of BCP on Extended b-metric Space)

“Let (X, dθ) be a complete extended b-metric space, such that dθ is a continuous

functional. Let T : X → X satisfy:

dθ(Tx, Ty) ≤ kdθ(x, y) ∀ x, y ∈ X,

where k ∈ [0, 1) be such that for each x0 ∈ X,

lim
n,m→∞

θ(xn, xm) <
1

k
,

here xn = T nx0, n = 1, 2, ..... Then T has precisely one fixed point ξ. Moreover

for each y ∈ X, T ny → ξ.”[26]

Harandi [10] established the following fixed point result on b-metric space in 2012.

Theorem 2.7.9 (Extension of BCP on Metric Like Space)

“Let (X, σ) be a complete metric-like space, and let T : X → X be a map such

that

σ(Tx, Ty) ≤ ψ(M(x, y)),

for all x, y ∈ X, where

M(x, y) = max {σ(x, y), σ(x, Tx), σ(y, Ty), σ(x, Ty), σ(y, Tx), σ(x, x), σ(y, y)},
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where ψ : [0,∞)→ [0,∞) is a nondecreasing function satisfying

ψ(t) < t ∀ t > 0, lim
s→t+

ψ(s) < t, ∀ t > 0 and lim
t→∞

(t− ψ(t)) =∞.

Then T has a fixed point.”[10]

Example 2.7.7.

Let Y = {0, 1, 2}. Define σ : Y × Y → R+ as follows:

σ(0, 0) = 0, iσ(1, 1) = 3, iσ(2, 2) = 1, iσ(0, 1) = σ(1, 0) = 7,

σ(0, 2) = σ(2, 0) = 3, iσ(1, 2) = σ(0, 2) = 4,

then (Y, σ) is aicomplete metric-likeispace. Note that σ isinot a partialimetric on

Y because

σ(0, 1) 6= σ(0, 2) + σ(2, 1)− σ(2, 2),

defineithe map T : Y → Y by

T0 = 0, T1 = 2, and T2 = 0,

then

σ(Tx, Ty) ≤
3

4
σ(x, y) ≤ 3

4
M(x, y)

for each x, y ∈ Y , hence all theirequired hypothesesiof Theorem 2.7.9 areisatisfied.

Therefore T has aiunique fixedipoint.



Chapter 3

Common Fixed Point Theorems

on b-metric-like Spaces

3.1 Introduction

In thisichapter, we presentithe conceptiof TgF -contractioniand investigate some

fixedipoint theorems forisuch contractioniin b-metric-likeispaces. Moreover, an

example isigivenito support oneiof ouriresults.

3.2 b-metric-like Space

Thisisection isidedicated to the notioniof b-metric-likeiSpace.

Definition 3.2.1. b-metric-like Space

A b-metric-likeion a nonemptyiset X is aifunction db : X ×X → [0,∞) suchithat,

foriall α, β, γ ∈ X and a constant b ≥ 1, the followingithree conditionsihold true:

(b1): if db(α, β) = 0 then α = β;

(b2): db(α, β) = db(β, α);

(b3): db(α, γ) ≤ b[db(α, β) + db(β, γ)].

Theipair (X, db) is thenicalled a b-metric-likeispace withicoefficient b. [22]

30
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Remark 3.2.1.

Each b-metric-like db on X generalizesia topology τb on X whoseibase isithe family

ofiopen b-balls

Bb(x, ε) = {z ∈ X : |db(x, z)− db(x, x)| < ε},

foriall x ∈ X and ε > 0. [22]

Example 3.2.1.

We take Y = [0,∞). Consider db : Y 2 → [0,∞), define a function by

db(α1, α2) = (α1 + α2)
2,

then itiis a b-metric-likeispace and itsiconstant is 2.

(b1)and (b2) are obvious.

(b3):

db(α1, α2) = (α1 + α2)
2

≤ (α1 + α3 + α3 + α2)
2

= (α1 + α3)
2 + (α3 + α2)

2 + 2(α1 + α3)(α3 + α2)

≤ 2[(α1 + α3)
2 + (α3 + α2)

2]

= 2[db(α1, α3) + db(α3, α2)]

⇒ db(α1, α2) ≤ 2[db(α1, α3) + db(α3, α2)].

Hence, the given function is a b-metric-like space.

Since self distances is non-zero hence db is not a b-metric space.

Example 3.2.2.

Let M = [0,∞). Consider db : M2 → [0,∞), define as

d
b
(α, β) = (max{α, β})2,

then (M,db) isia b-metric-likeispace and itsiconstant is 2.

(b1)and (b2) are obvious.
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(b3):

db(α, γ) = (max{α, γ})2

≤ (max{α, β, γ})2

≤ (max{α, β}+ (max{β, γ})2

≤ 2[(max{α, β})2 + (max{β, γ})2]

⇒ db(α, γ) ≤ 2[db(α, β) + db(β, γ)].

Hence, the given function isia b-metric-ikeispace.

Definition 3.2.2 (Cauchy, Convergence and Completeness).

A sequence {ym} inia b-metric-likeispace (Y, db) convergesito a point y ∈ Y ifiand

onlyiif

db(y, y) = lim
m−→∞

db(y, ym).

A sequence {yn} in a b-metric-like space (Y, db) is called a Cauchy sequence if

lim
m,n−→∞

db(yn, ym)

exists.

A b-metric-likeispace is calledicompleteiif every Cauchyisequence {yn} in Y con-

vergesiwith respectito τb to aipoint y ∈ Y suchithat

lim
m−→∞

db(y, ym) = db(y, y)

= lim
m,n−→∞

db(yn, ym). [22]

Inithis section, weiintroduce the conceptiof TgF -contractioniand investigate com-

monifixed point theoremsifor such contractioniin b-metric-likeispaces. Moreover,

3.3 Fixed Point Results for TgF -Contraction of

Geraghty Type in b-metric-like Spaces
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an example is givenito support one ofiour results.

Definition 3.3.1.

Let C be class of allifunctions γ : [0,∞)→ [0, 1) that satisfyithe condition:

lim
m−→∞

γ(tm) = 1 implies lim
m−→∞

(tm) = 0.

Theorem 3.3.2

Let (Y, d) be a completeimetric space and S : Y → Y be a mapping. If S satisfies

d(S(u), S(v)) ≤ γ(d(u, v))d(u, v) for any u, v ∈ Y,

where γ ∈ C, then S hasia unique fixedipoint.[42]

Theorem 3.3.3

Let (Y, σ) be aicomplete metric-likeispace and S : Y → Y be aimapping. If there

exists γ ∈ C such that

σ(S(u), S(v)) ≤ γ(S(u, v))S(u, v) for all u, v ∈ Y,

where

S(u, v) = σ(u, v)|σ(u, Su)− σ(v, Sv)|,

then T has a unique fixed point.[43]

Lemma 3.3.1.

Let g and h be weaklyicompatible self mapsiof a set Y . If g and h have aiunique

point oficoincidence u = g(y) = h(y), then u is theiunique commonifixed point of

g and h. [40]

Proof.

Since u = g(y) = h(y) and g and h are weakly compatible, we have g(u) =

g(hy) = h(gy) = h(u): i.e., g(u) = h(u) is aipoint oficoincidence of g and h. But

u is theionly point oficoincidence of g and h, so u = g(u) = h(u). Moreover if

v = g(v) = h(v), then v is aipoint oficoincidence of g and h, anditherefore v = u

byiuniqueness. Thus u isia uniqueicommon fixedipoint of g and h.
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Definition 3.3.4. TgF -Contraction

Let (Y, db) beia b-metric-likeispace withicoefficient b ≥ 1 and T, g : Y → Y

beitwoimappings. We sayithat theipair TgF isia TgF -contraction ofiGeraghty type

ifithere exists γ ∈ C suchithat

db(T y, T z)i ≤ iγ(Fg(y, z))Fg(y, z) for all y, z ∈ Y, (3.1)

where

Fg(y, z) =
1

b2
[db(gy, gz) + |db(gy, T y)− db(gz, T z)|] . [25]

Lemma 3.3.2.

Let (Y, db) beia b-metric-likeispace, T and g beiself-mappingsion Y suchithat (T , g)

is a TgF -contractioniof Geraghtyitype. If w ∈ Y is aipoint of coincidenceiof T and

g, then db(w,w) = 0. [25]

Proof.

Supposeithat w ∈ Y is a pointiof coincidencevof T and g, then thereiexists v ∈ Y

suchithat T v = gv = w.

Assume db(w,w) > 0, weiget

db(w,w) = db(T v, T v) ≤ γ(Fg(v, v))Fg(v, v),

since

Fg(v, v) =
1

b2
[db(gv, gv) + |db(gv, T v)− db(gv, T v)|] =

1

b2
db(w,w)

then we have

db(w,w) <
1

b2
db(w,w),

which is a contradiction, hence db(w,w) = 0.

Theorem 3.3.5

Consider (Y, db) beia b-metric-likeispace withicoefficient b ≥ 1, T , g : Y → Y be

twoimappings with T Y ⊆ gY and gY isicomplete. If theipair (T , g) isia TgF -

contractioniof Geraghtyitype, then T and g haveia uniqueipoint oficoincidence.
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Iniaddition,iif T and g areiweaklyicompatible, then T and g haveia unique com-

monifixed point. [25]

Proof.

For aniarbitrary y0 ∈ Y , since T Y ⊆ gY , we can construct a sequence {xm} by

xm = gym = T ym−1 (3.2)

for all m ∈ Z+. Now, weiprove that T and g haveia point oficoincidence. If

there existsisome m0 ∈ Z+ suchithat db(xm0 , xm0+1) = 0, then xm0 = xm0+1,

whichiimplies gym0 = T ym0 , thus, xm0 isia coincidence pointiof T and g, so v0 =

gym0 = T ym0 is a pointiof coincidenceiof T and g. Weiassume that db(xm, xm+1) >

0 foriall m ∈ mathbbZ+. From (3.1), we have

db(xm, xm+1) = db(T ym−1, T ym)

≤ γ(Fg(ym−1, ym))Fg(ym−1, ym)
(3.3)

where

Fg(ym−1, ym) =
1

b2
[db(gym−1, gym) + |db(gym, T ym−1)− db(gym, T ym)|]

=
1

b2
[db(xm−1, xm) + |db(xm−1, xm)− db(xm, xm+1)|]

Assume that there exists m0 ∈ z+ such that

db(xm0−1, xm0) ≤ db(xm0 , xm0)

By (3.3), we get

db(xm0 , xm0) = db(T ym0−1, T ym0)

≤ γ(Fg(ym0−1, ym0))Fg(ym0−1, ym0)

< Fg(ym0−1, ym0)

=
1

b2
[db(gym0−1, gym0) + |db(gym0−1, T ym0−1)− db(gym0 , T ym0)|]
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=
1

b2
[db(xm0−1, xm0) + |db(xm0−1, xm0)− db(xm0 , xm0+1)|]

=
1

b2
db(xm0 , xm0+1))

≤ db(xm0 , xm0+1),

which is a contradiction. Thus, we obtain

db(xm0−1, xm0) > db(xm0 , xm0+1) (3.4)

for all m ∈ Z+. Therefore, there exists c ≥ 0 such that

lim
m→∞

db(xm0−1, xm0) = c (3.5)

(3.3) and (3.4) yield that

db(xm, xm+1) = db(T ym−1, vym)

≤ γ(Fg(ym−1, ym))Fg(ym−1, ym)

= γ

[
1

b2
(2db(xm−1, xm)db(xm, xm + 1))

]
.
1

b2
(2db(xm−1, xm)− db(xm, xm+1))

≤ γ

[
1

b2
(2db(xm−1, xm)db(xm, xm + 1))

]
.(2db(xm−1, xm)− db(xm, xm+1)

< 2db(xm−1, xm)− db(xm, xm+1)

(3.6)

Taking m→∞ in (3.6), we get

lim
m→∞

γ

[
2db(xm−1, xm)− db(xm, xm+1)

b2

]
= 1

hence,

lim
m→∞

2db(xm−1, xm)− db(xm, xm+1)

b2
= 0.

On the other hand,

lim
m→∞

2db(xm−1, xm)− db(xm, xm+1)

b2
=
c

b

2
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therefore c = 0. Hence,

lim
m→∞

db(xm−1, xm) = 0. (3.7)

Now we prove that

lim
n,m→∞

db(xn, xm) = 0. (3.8)

db(xn(j), xm(j)) ≥ ε, db(xn(j)−1, xm(j)) < ε. (3.9)

Applying (3.1) and (3.9), we have

ε ≤ db(xn(j), xm(j))

= db(T yn(j)−1, T ym(j)−1)

≤ γ(Fg(yn(j)−1, ym(j)−1)Fg(yn(j)−1, ym(j)−1)

< Fg(yn(j)−1, ym(j)−1),

(3.10)

where

Fg(yn(j)−1, ym(j)−1) =
1

b2
[
db(gyn(j)−1, gym(j)−1) + |db(gym(j)−1, T ym(j)−1)− db(gym(j)−1, T ym(j)−1)|

]
=

1

b2
[
db(xn(j)−1, xm(j)−1) + |db(xn(j)−1, xn(j))db(xm(j)−1, xm(j))|

]
.

(3.11)

Next weidiscuss twoicases.

Case 1: Caseiof b > 1. Applying (3.7), (3.10), and (3.11), weiobtain

ε ≤ lim inf
m→∞

1

b2
db(xn(j)−1, xm(j)−1). (3.12)

Moreover, from (3.9), we have

db(xn(j)−1, xm(j)−1) ≤ bdb(xn(j)−1, xm(j)) + bdb(xm(j), xm(j)−1)

< bε+ bdb(xm(j), xm(j)−1).

If (3.8) doesinot hold, thenithere exists ε > 0, foriwhich we canifinditwo subse-

quences {xn(j)} and {ym(j)} of {ym}, where n(j) is the smallest index for which

n(j) > m(j) > j with
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Taking lim
m→∞

inithe aboveiinequalities, weihave

lim inf
m→∞

db(xn(j)−1, xm(j)−1) ≤ bε (3.13)

(3.12) and (3.13) imply ε ≤ ε

b
, whichiis aicontradiction.

Case 2: Caseiof b = 1. From (3.9), weihave

ε ≤ db(xn(j), xm(j))

≤ db(xn(j), xn(j)−1) + db(xn(j)−1, xm(j)−1) + db(xm(j)−1, xn(j))

≤ db(xn(j), xn(j)−1) + db(xn(j)−1, xm(j)) + 2db(xm(j)−1, xm(j))

< db(xn(k), xn(k)−1) + ε+ 2db(xm(j)−1, xm(j)).

(3.14)

By (3.7), taking lim
m→∞

in (3.14), we have

lim
m→∞

db(xn(j)−1, xm(j)−1) = ε (3.15)

Since b = 1, by (3.10) and (3.11), we have

ε ≤ γ(Fg(yn(k)−1, ym(k)−1))Fg(yn(k)−1, ym(k)−1)

< db(xn(k)−1, xm(k)−1) + |db(xn(k)−1, xn(k))db(xm(k)−1, xm(k))|.
(3.16)

(3.7), (3.15) and (3.16) yield

lim
m→∞

γ(Fg(yn(k)−1, ym(k)−1))Fg(yn(k)−1, ym(k)−1) = ε (3.17)

From (3.11) and (3.15), anditaking b = 1 intoiaccount, weiget

lim
m→∞

Fg(yn(k)−1, ym(k)−1) = ε,

whichitogetheriwith (3.17) implies

lim
m→∞

γFg(yn(k)−1, ym(k)−1) = ε,

thus

lim
m→∞

Fg(yn(k)−1, ym(k)−1) = 1,
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whichiis a contradictioniwith

lim
m→∞

Fg(yn(k)−1, ym(k)−1) = ε,

From theiabove discussions, weiget that (3.8) holds. Therefore, theisequence

{xm} = {gym} isia Cauchy sequenceiin gY . Since gY isicomplete, then thereiexist

w, u ∈ Y suchithat w = gu, and theifollowing equalitiesihold:

lim
m,n→∞

db(xm, w) = db(w,w) = lim
m,n→∞

db(xm, xn) = lim
m,n→∞

db(xm, gu) = 0. (3.18)

By (3.1), weihave

db(xm, T u) = db(T ym−1, T u) ≤ γ(Fg(ym−1, u))Fg(ym−1, u) < Fg(ym−1, u),

(3.19)

where

Fg(ym−1, u) =
1

b2
[db(gym−1, gu) + |db(gym−1, T ym−1) − db(gu, T u)|]

=
1

b2
[db(xm−1, w) + |db(xm−1, xm)− db(w, T u)|].

(3.20)

Next, weiprove b(T u,w) = 0 in twoicases:

Case 1. b > 1. Suppose db(T u,w) > 0. Letting lim
m→∞

in (3.19), applying (3.20),

we obtain

lim inf
m→∞

db(xm, T u) ≤ 1

b2
db(w, T u). (3.21)

By the triangle inequality, we get db(w, T u) ≤ bdb(xm, w) + bdb(xm, T u), which

yields

db(w, T u) ≤ b lim inf
m→∞

db(ym, T u). (3.22)

Applying (3.22), we have

lim inf
m→∞

db(xm, T u) ≥ 1

b
db(w, T u) > 0.
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From (3.21) and (3.22), we get

db(w, T u) ≤ 1

b
db(w, T u) < db(w, T u),

this is a contradiction, therefore db(T u,w) = 0.

Case 2. b = 1. Taking lim
m→∞

in (3.20), anditaking b = 1 intoiaccount, weiobtain

lim
m→∞

Fg(ym−1, u) = db(w, T u). (3.23)

On the other hand, from (3.1), we have

db(w, T u) ≤ db(w, xm) + db(xm, T u)

= db(w, xm) + db(T ym−1, T u)

≤ db(w, xm) + γ(Fg(ym1, u))Fg(ym−1, u)

< db(w, xm) + Fg(ym−1, u).

(3.24)

Letting lim
m→∞

in (3.24), by (3.23), weiget lim
m→∞

γ(Fg(ym−1, u) = 1,

hence lim
m→∞

γ(Fg(ym−1, u) = 0, by (3.23), weiget db(T u,w) = 0. The above two

casesimean db(T u,w) = 0, whichiimplies T u = w, thus T u = w = gu. Therefore,

T and g haveia coincidenceipoint u, and w is a pointiof coincidence of T and g.

By Lemma 3.3.1, weiget db(w,w) = 0. Supposeithat w1 is also aipoint of co-

incidenceiof T and g, then weican find u1 ∈ Y suchithat T u1 = w1 = gu1

and db(w1, w1) = 0. Now, weiprove db(w,w1) = 0 byicontradiction. Suppose

db(w,w1) > 0, applying (3.1), weihave

db(w,w1) = db(T u, T u1) ≤ γ(Fg(u, u1))Fg(u, u1) < Fg(u, u1), (3.25)

where Fg(u, u1) =
1

b2
[db(gu, gu1) + |db(gu, T u)− b(gu1, T u1)|]

=
1

b2
[db(w,w1) + |db(w,w)− b(w1, w1)|]

=
1

b2
db(w,w1)

(3.26)
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From (3.25) and (3.26), we obtain

db(w,w1) <
1

b2
db(w,w1),

which is a contradiction, thus db(w,w1) = 0, whichiimplies w = w1, therefore T

and g haveia unique point oficoincidence. Moreover, T and g areiweakly compati-

ble, theniwe have T w = gw. Let T w = gw = v. From theiuniqueness of theipoint

of coincidence, weihave T w = gw = v = w, thatiis, T w = gw = w. Therefore, T

and g haveia unique common fixedipoint.

Letting g = Iy (identityimapping) iniTheorem 3.3.5, we caniget theifollowing.

Corollary 1.

Let (Y, db) beiaicomplete b-metric-likeispace withicoefficient b ≥ 1, and T : Y → Y

beia mapping. If thereiexists γ ∈ C suchithat

db(T y, T z) ≤ γ(F (y, z))F (y, z),

foriany y, z ∈ Y , where

F (y, z) =
1

b2
[db(y, z) + |db(y, T y)− db(z, T z)|],

then T has aiunique fixedipoint. [25]

Taking b = 1 iniCorollary 1, weihave theifollowing.

Corollary 2.

Let (Y, σ) beia completeimetric-likeispace and T : Y → Y beia mapping. If

thereiexists γ ∈ C suchithat

σ(T y, T z) ≤ γ(F (y, z))F (y, z) for any y, z ∈ Y,

where

F (y, z) = σ(y, z) + |σ(y, T y)σ(z, T z)|,

then T hasia unique fixedipoint. [25]
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Taking b = 1 iniTheorem 3.3.5, we haveitheifollowing.

Corollary 3.

Let (Y, db) beia b-metric-likeispace and T , g : Y × Y → Y beitwo mappings with

T Y ⊆ gY and gY isicomplete. Supposeithat thereiexists γ ∈ C suchithat

db(T y, T z) ≤ γ(Fg(y, z))Fg(y, z),

where

Fg(y, z) = db(gy, gz) + |db(gy, T y)− db(gz, T z)|,

then T and g haveia unique pointiof coincidence. Iniaddition, if T and g are

weaklyicompatible, then T and g haveia unique commonifixed point. [25]

Now, weiuse an exampleito illustrate theivalidity of our mainiresult.

Example 3.3.1.

Let Y = {0, 1, 2}. Define db : Y × Y → R by db(0, 0) = 0, idb(1, 1) = 3, idb(2, 2) =

1, idb(0, 1) = db(1, 0) = 8, idb(0, 2) = db(2, 0) = 1, idb(1, 2) = db(2, 1) = 4. Itiis easy

toiprove that (X, db) isia complete b-metric-likeispace withicoefficient b = 8
5
.

Consider T : Y → Y as T 0 = 0, iT 1 = 2, iT 2 = 0. Take

γ(s) =


1

1 +
s

100

, s > 0,

1

3
, s = 0.

By theifollowing cases, weiprove

db(T y, T z) ≤ γ(F (y, z))F (y, z) for any y, z ∈ Y,

where

F (y, z) =
1

b2
[db(y, z) + |db(y, T y)− b(z, T z)|].

Case 1: (y, z) = (0, 0), (y, z) = (2, 2), (y, z) = (0, 2). Since

db(T 0, T 0) = db(0, 0) = 0, db(T 2, T 2) = db(0, 0) = 0, db(T 0, T 2) = db(0, 0) = 0,



Common Fixed Point Theorems on b-metric-like Spaces 43

db(T 0, T 1) = db(0, 2) = 1,

and

F (0, 1) =
25

64
[db(0, 1) + |db(0, T 0)− db(1, T 1)|] =

300

64
,

hence

db(T 0, T 1) = 1 < γ(F (0, 1))F (0, 1) =

(
1

1 +
(

1
100

) (
300
64

))(300

64

)
=

300

94
.

Case 3: (y, z) = (1, 1). We get

hence

db(T 1, T 1) = 1 < γ(F (1, 1))F (1, 1) =

(
1

1 +
(

1
100

) (
75
64

))(75

64

)
=

750

715
.

Case 4: (y, z) = (1, 2). We get

db(T 1, T 2) = db(2, 0) = 1,

and

F (1, 2) =
25

64
[db(1, 2) + |db(1, T 1)− db(2, T 2)|] =

175

64
,

hence

db(T 1, T 2) = 1 < γ(F (0, 1))F (0, 1) =

(
1

1 +
(

1
100

) (
175
64

))(175

64

)
=

1750

815
.

From the above discussions, we know that

db(T y, T z) ≤ γ(F (y, z))F (y, z) for any y, z ∈ Y,

then

db(T y, T z) ≤ γ(F (y, z))F (y, z),

holds for (y, z) = (0, 0), i(y, z) = (2, 2), i(y, z) = (0, 2).

Case 2: (y, z) = (0, 1). We get

db(T 1, T 1) = db(2, 2) = 1

and

F (1, 1) =
25

64
[db(1, 1) + |db(1, T 1)− db(1, T 1)|] =

75

64
,
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where

F (y, z) =
1

b2
[db(y, z) + |db(y, T y)− b(z, T z)|].

ByiCorollary 1, weiobtain that T hasia unique fixedipoint, 0 is theiunique fixed

pointiof T . [25]



Chapter 4

Common Fixed Point Theorems

on Extended b-metric-like Spaces

This chapter is the extention of the results presented in [25]. In the start of this

chapter we introduced extended b-metric-like spaces and some other definitions

which will be used in the main result.

4.1 Extended b-metric-like Space

This section comprises of a very important generalization of b-metric-like space

known as extended b-metric-likeispace.

Definition 4.1.1. Extended b-metric-like Space

Consider aiset Y which is non-empty and µ : Y × Y → [1,∞). A mapping

dbµ : Y ×Y → [0,∞) is said to be an extended b-metric like if for all y1, y2, y3 ∈ Y ,

the following conditions are satisfied

(dbµ1) : dbµ(y1, y2) = 0⇒ y1 = y2;

(dbµ2) : dbµ(y1, y2) = dbµ(y2, y1);

(dbµ3) : dbµ(y1, y3) ≤ µ(y1, y3)[dbµ(y1, y2) + dbµ(y2, y3)],

then (Y, dbµ) is known as extended b-metric like space.

45
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Remark 4.1.1.

(1) It is worth to mention that b-metric-likeispace is a specialicase ofiextended

b-metricispace when µ(y1, y2) = b with b ≥ 1.

(2) The metric-likeispace is a special caseiof extended b-metric-likeispace when

µ(y1, y2) = b with b = 1.

Example 4.1.1.

LetiY = {1, 2, 3, ....}iand dbµ : Y × Y → [0,∞) defined as

dbµ(y1, y2) = (y1 − y2)2.

Consider a function µ : Y × Y → [1,∞) defined as

µ(y1, y2) =
y1 + y2 + 2

y1 + y2
,

then (Y, dbµ) is an extended b-metric like space.

(dbµ1) and (dbµ2) are obvious.

(dbµ3) : To prove

dbµ(y1, y3) ≤ µ(y1, y3)[dbµ(y1, y2) + dbµ(y2, y3)],

we proceed as follows:

dbµ(y1, y3) = (y1 − y3)2

≤
[
(y1 − y2)2 + (y2 − y3)2

]
≤ 2

[
(y1 − y2)2 + (y2 − y3)2

]
≤ y1 + y3 + 2

y1 + y3

[
(y1 − y2)2 + (y2 − y3)2

]
= µ(y1, y3) [dbµ(y1, y2) + dbµ(y2, y3)] ,

Example 4.1.2.

Consider a set Y = [0, ∞) and dbµ : Y × Y → [0, ∞) and is defined as

dbµ(y1, y2) = {max(y1, y2)}2.

hence proved that it isian extended b-metric-likeispace.
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Consider a function µ : Y × Y → [1,∞) defined as

µ(y1, y2) = 2y1 + y2 + 2,

then (µ, dbµ) is an extended b-metric like space.

(dbµ1) and (dbµ2) are obvious.

(dbµ3) : To prove dbµ(y1, y3) ≤ µ(y1, y3) {dbµ(y1, y2) + dbµ(y2, y3)}, we proceed as

follows:

{max(y1, y3)}2 ≤ {max(y1 + y2), (y2 + y3)}2

≤ {max(y1, y2) + (y2, y3)}2

≤ {max(y1, y2) + max(y2, y3}2

≤ 2
[
{max(y1, y2)}2 + {max(y2, y3)}2

]
≤ (2y1 + y3 + 2)

[
{max(y1, y2)}2 + max{(y2, y3)}2

]
⇒ dbµ(y1, y3) ≤ µ(y1, y3){dbµ(y1, y2) + dbµ(y2, y3)},

hence proved that it isian extended b-metric-likeispace.

Someinecessary definition andiconcepts are given in upcoming discussion. These

concepts will help in proving the main result.

Definition 4.1.2.

Consider aniextended b-metric like space (Y, dbµ). Itiinduces a topology τdbµ on Y

based on the family of open dbµ-balls

Bdbµ(y, ε) = {z ∈ Y : |dbµ(y, z)− dbµ(y, y)| < ε},

for all ε > 0 and y ∈ Y .

Definition 4.1.3.

Assume that (Y, dbµ) is aniextended b-metric-likeispace and µ : Y × Y → [1,∞).

Consider a sequence {ym} in Y and y ∈ Y , then
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(1) {ym} is said to converge to a point y ∈ Y , iff we have

lim
m→∞

dbµ(y, ym) = dbµ(y, y).

(2) {ym} is a Cauchy sequence if and only if

lim
m,n→∞

dbµ(ym, yn),

exists.

(3) An extended b-metric like space (Y, dbµ) is called complete iff each sequence

{ym} in Y which is Cauchy in Y is convergent to y ∈ Y that is

lim
m,n→∞

dbµ(ym, yn) = dbµ(y, y) = lim
m→∞

dbµ(ym, y).

Definition 4.1.4. TgF -Contraction

Let (Y, dbµ) be aniextended b-metric-likeispace withicoefficient µ : Y ×Y → [1,∞)

and T , g : Y → Y beitwo mappings. Weisay that theipair (T , g) is a TgF -

contractioniof Geraghtyitype if thereiexists γ : [0,∞) → [0, 1), whichisatisfy

theicondition

lim
m→∞

γ(tm) = 1⇒ lim
m→∞

(tm) = 0,

such that

dbµ(T y, T ) ≤ γ(Fg(y, z))Fg(y, z) (4.1)

for all y, z ∈ Y , where

Fg(y, z) =
1

µ(y, z)2
[dbµ(gy, gz) + |dbµ(gy, T y)− dbµ(gz, T z)|].

Lemma 4.1.1.

Let (Y, db) be an extended b-metric-likeispace, T and g beiself-mappings on Y

suchithat theipair (T , g) is a TgF -contractioniof Geraghtyitype. If w ∈ Y is aipoint

oficoincidence of T and g, then dbµ(w,w) = 0.
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Proof.

Supposeithat w ∈ Y is a pointiof coincidence of T and g, thenithereiexists v ∈ Y

suchithat T v = gv = w.

Assume dbµ(w,w) > 0, weiget

dbµ(w,w) = dbµ(T v, T v) ≤ γ(Fg(v, v))Fg(v, v)

since

Fg(v, v) =
1

µ(y, z)2
[dbµ(gv, gv) + |dbµ(gv, T v)− dbµ(gv, T v)|]

=
1

µ(y, z)2
dbµ(w,w),

then we have

dbµ(w,w) <
1

µ(y, z)2
db(w,w),

which is a contradiction, hence dbµ(w,w) = 0.

4.2 Main Result

Theorem 4.2.1

Let (Y, dbµ) be an extended b-metric-likeispace withicoefficient µ : Y ×Y → [1,∞),

and T , g : Y → Y beitwo mappingsiwith T Y ⊆ gY and gY isicomplete. Then T

and g haveia unique point oficoincidence if:

(i) If theipair (T , g) is a TgF -contractioniof Geraghtyitype.

(ii) For J ∈ (0, 1) and for an arbitrary y0 ∈ Y , lim
m,n→∞

µ(ym, yn) <
1

J
with xm =

gym = T ym−1.

Iniaddition, if T and g areiweakly compatible,ithen T and g haveia uniqueicommon

fixedipoint.

Proof.

Consider aniarbitrary y0 ∈ Y , since T Y ⊆ gY , we can construct a sequence {xm}

by

xm = gym = T ym−1 (4.2)
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for all m ∈ Z+. Now, weiprove that T and g haveia point oficoincidence. If there

existsisome m0 ∈ Z+ such that

dbµ(xm0 , xm0+1) = 0, then xm0 = xm0+1,

which implies gym0 = T ym0 , thus, xm0 is aicoincidence pointiof T and g, so v0 =

gym0 = T ym0 is a point oficoincidence of T and g. Weiassumeithat

dbµ(xm, xm+1) > 0 for all m ∈ Z+.

From (4.1), we have

dbµ(xm, xm+1) = dbµ(T ym−1, T ym)

≤ γ(Fg(ym−1, ym))Fg(ym−1, ym)
(4.3)

where

Fg(ym−1, ym) =
1

{µ(ym−1, ym)}2

[dbµ(gym−1, gym) + |dbµ(gym, T ym−1)− dbµ(gym, T ym)|]

=
1

{µ(ym−1, ym)}2
[dbµ(xm−1, xm) + |dbµ(xm−1, xm)− dbµ(xm, xm+1)|]

Assume that there exists m0 ∈ Z+ such that

dbµ(xm0−1, xm0) ≤ dbµ(xm0 , xm0)

By (4.3), we get

dbµ(xm0 , xm0+1) = dbµ(T ym0−1, T ym0)

≤ γ(Fg(ym0−1, ym0))Fg(ym0−1, ym0)

< Fg(ym0−1, ym0)

=
1

{µ(ym0−1, ym0)}2

[dbµ(gym0−1, gym0) + |dbµ(gym0−1, T ym0−1)− dbµ(gym0 , T ym0)|]
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=
1

{µ(ym0−1, ym0)}2

[dbµ(xm0−1, xm0) + |dbµ(xm0−1, xm0)− dbµ(xm0 , xm0+1)|]

=
1

{µ(ym0−1, ym0)}2

[dbµ(xm0−1, xm0)− dbµ(xm0−1, xm0) + dbµ(xm0 , xm0+1)]

=
1

{µ(ym0−1 , ym0)}2
dbµ(xm0 , xm0+1))

≤ dbµ(xm0 , xm0+1)

which is a contradiction. Thus, we obtain

dbµ(xm0−1, xm0) > dbµ(xm0 , xm0+1) for all m ∈ Z+.

(4.4)

Therefore, there exists c ≥ 0 such that

lim
m→∞

dbµ(xm0−1, xm0) = c

(4.5)

(4.3) and (4.4) yield that

dbµ(xm, xm+1) = dbµ(T ym−1, T ym)

≤ γ(Fg(ym−1, ym))Fg(ym−1, ym)

= γ

[
1

{µ(ym−1, ym)}2
(2dbµ(xm−1, xm)dbµ(xm, xm+1))

]
.

1

{µ(ym−1, ym)}2
(2dbµ(xm−1, xm)− dbµ(xm, xm+1))

≤ γ

[
1

{µ(ym−1, ym)}2
(2dbµ(xm−1, xm)− dbµ(xm, xm+1))

]
.

(2dbµ(xm−1, xm)− dbµ(xm, xm+1))

< 2dbµ(xm−1, xm)− dbµ(xm, xm+1)

(4.6)

Taking lim
m→∞

in (4.6), we get

lim
m→∞

γ

[
2dbµ(xm−1, xm)− dbµ(xm, xm+1)

{µ(ym−1, ym)}2

]
= 1
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hence,

lim
m→∞

2dbµ(xm−1, xm)− dbµ(xm, xm+1)

{µ(ym−1, ym)}2
= 0.

On the other hand,

lim
m→∞

2dbµ(xm−1, xm)− dbµ(xm, xm+1)

{µ(ym−1, ym}2
=

c

lim
m→∞

{µ(ym−1, ym}2

therefore c = 0. Hence,

lim
m→∞

dbµ(xm−1, xm) = 0. (4.7)

Now we prove that

lim
n,m→∞

dbµ(xn, xm) = 0. (4.8)

If (4.8) doesinot hold, thenithere exists ε > 0, for whichiwe can finditwo subse-

quences {xn(j)} and {ym(j)} of {ym}, where n(j) is the smallest index for which

n(j) > m(j) > j with

dbµ(xn(j), xm(j)) ≥ ε, dbµ(xn(j)−1, xm(j)) < ε. (4.9)

Applying (4.1) and (4.9), we have

ε ≤ dbµ(xn(j), xm(j))

= dbµ(T yn(j)−1, T ym(j)−1)

≤ γ(Fg(yn(j)−1, ym(j)−1)Fg(yn(j)−1, ym(j)−1)

< Fg(yn(j)−1, ym(j)−1),

(4.10)

Fg(yn(j)−1, ym(j)−1) =
1

{µ(yn(j)−1, ym(j)−1)}2
.[

dbµ(gyn(j)−1, gym(j)−1) +
∣∣dbµ(gym(j)−1, T ym(j)−1)− dbµ(gym(j)−1, T ym(j)−1)

∣∣]
=

1

{µ(yn(j)−1, ym(j)−1)}2
.[

dbµ(xn(j)−1, xm(j)−1) +
∣∣dbµ(xn(j)−1, xn(j))− dbµ(xm(j)−1, xm(j))

∣∣] .
(4.11)

where
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Nextiwe discussitwo cases.

Case 1: Caseiof µ(yn(j)−1, ym(j)−1) > 1. Applying (4.7), (4.10), and (4.11), we

obtain

ε ≤ lim inf
m→∞

1

{µ(yn(j)−1, ym(j)−1)}2
dbµ(xn(j)−1, xm(j)−1). (4.12)

Moreover, from (4.9), we have

dbµ(xn(j)−1, xm(j)−1) ≤ µ(yn(j)−1, ym(j)−1)dbµ(xn(j)−1, xm(j))+

µ(yn(j)−1, ym(j)−1)dbµ(xm(j), xm(j)−1)

< µ(yn(j)−1, ym(j)−1)ε+

µ(yn(j)−1, ym(j)−1)dbµ(xm(j), xm(j)−1).

Taking lim inf
m→∞

inithe aboveiinequalities, weihave

lim inf
m→∞

dbµ(xn(j)−1, xm(j)−1) ≥
ε

J
(4.13)

(4.12) and (4.13) imply ε ≤ Jε, which is aicontradiction.

Case 2: Caseiof µ(yn(j)−1, ym(j)−1) = 1. From (4.9), we have

ε ≤ dbµ(xn(j), xm(j))

≤ dbµ(xn(j), xn(j)−1) + dbµ(xn(j)−1, xm(j)−1) + dbµ(xm(j)−1, xn(j))

≤ dbµ(xn(j), xn(j)−1) + dbµ(xn(j)−1, xm(j)) + 2dbµ(xm(j)−1, xm(j))

< dbµ(xn(k), xn(k)−1) + ε+ 2dbµ(xm(j)−1, xm(j)).

(4.14)

By (4.7), taking lim inf
m→∞

in (4.14), we have

lim inf
m→∞

dbµ(xn(j)−1, xm(j)−1) = ε (4.15)

Since µ(yn(j)−1, ym(j)−1) = 1, by (4.10) and (4.11), we have

ε ≤ γ(Fg(yn(k)−1, ym(k)−1))Fg(yn(k)−1, ym(k)−1)

< dbµ(xn(k)−1, xm(k)−1) + |dbµ(xn(k)−1, xn(k))− dbµ(xm(k)−1, xm(k))|.
(4.16)
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(4.7), (4.15) and (4.16) yield

lim inf
m→∞

γ(Fg(yn(k)−1, ym(k)−1))Fg(yn(k)−1, ym(k)−1) = ε (4.17)

From (4.11) and (4.15), and taking µ(yn(j)−1, ym(j)−1 = 1 intoiaccount, weiget

lim inf
m→∞

Fg(yn(k)−1, ym(k)−1) = ε,

whichitogether with (4.17)iimplies

lim inf
m→∞

γ{Fg(yn(k)−1, ym(k)−1)} = ε,

thus

lim inf
m→∞

Fg(yn(k)−1, ym(k)−1) = 1,

whichiis a contradictioniwith

lim inf
m→∞

Fg(yn(k)−1, ym(k)−1) = ε,

lim
m,n→∞

dbµ(xm, w) = dbµ(w,w) = lim
m,n→∞

dbµ(xm, xn) = lim
m,n→∞

db(xm, gu) = 0.

(4.18)

By (4.1), weihave

dbµ(xm, T u) = dbµ(T ym−1, Tu) ≤ γ(Fg(ym−1, u))Fg(ym−1, u) < Fg(ym−1, u),

(4.19)

F g(ym−1, u) =
1

{µ(ym−1, u)}2
[dbµ(gym−1, gu) + |dbµ(gym−1, T ym−1) − dbµ(gu, T u)|]

=
1

{µ(ym−1, u)}2
[dbµ(xm−1, w) + |dbµ(xm−1, xm)− dbµ(w, T u)|].

(4.20)

where

Fromithe aboveidiscussions, we getithat equation (4.8) holds. Therefore,ithe se-

quence {xm} = {gym} isia Cauchyisequence in gY . Since gY isicomplete, then

thereiexist w, u ∈ Y suchithat w = gu, and theifollowing equalitiesihold:
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Next, we prove dbµ(T u,w) = 0 in two cases:

Case 1. µ(ym−1, u) > 1. Suppose dbµ(T u,w) > 0. Letting lim
m→∞

in (4.19), applying

(4.20), we obtain

lim inf
m→∞

dbµ(xm, T u) ≤ J2dbµ(w, Tu). (4.21)

By the triangle inequality, we get

dbµ(w, T u) ≤ µ(ym−1, u)dbµ(xm, w) + µ(ym−1, u)dbµ(xm, T u),

which yields

dbµ(w, T u) ≤ lim inf
m→∞

µ(ym−1, u)dbµ(ym, T u)

<
1

J
lim inf
m→∞

dbµ(ym, T u)
(4.22)

Applying (4.22), we have

lim inf
m→∞

dbµ(xm, T u) ≥ Jdbµ(w, T u) > 0.

From (4.21) and (4.22), we get

J2dbµ(w, T u) ≥ Jdbµ(w, T u),

⇒ Jdbµ(w, T u) ≥ dbµ(w, T u),

this is a contradiction, therefore dbµ(T u,w) = 0.

Case 2. µ(ym−1, u) = 1. Taking m → ∞ in (4.20), and taking µ(ym−1, u) = 1

intoiaccount, weiobtain lim
m→∞

Fg(ym−1, u) = dbµ(w, T u). (4.23)

On the other hand, from (4.1), we have

dbµ(w, T u) ≤ dbµ(w, xm) + dbµ(xm, T u)

= dbµ(w, xm) + dbµ(T ym−1, T u)

≤ dbµ(w, xm) + γ(Fg(ym1, u))Fg(ym−1, u)

< dbµ(w, xm) + Fg(ym−1, u).

(4.24)
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Letting lim
m→∞

in (4.24), by (4.23), weiget

lim
m→∞

γ(Fg(ym−1, u) = 1.

Hence,

lim
m→∞

Fg(ym−1, u) = 0,

by (4.23), we get

dbµ(T u,w) = 0.

dbµ(w,w1) = dbµ(T u, T u1) ≤ γ(Fg(u, u1))Fg(u, u1) < Fg(u, u1), (4.25)

where

Fg(u, u1) =
1

{µ(w,w1)}2
[dbµ(gu, gu1) + |dbµ(gu, T u)− dbµ(gu1, T u1)|]

=
1

{µ(w,w1)}2
[dbµ(w,w1) + |dbµ(w,w)− dbµ(w1, w1)|]

=
1

{µ(w,w1)}2
db(w,w1)

(4.26)

From (4.25) and (4.26), we obtain

dbµ(w,w1) <
1

{µ(w,w1)}2
dbµ(w,w1),

which is a contradiction, thus

dbµ(w,w1) = 0, ⇒ w = w1,

therefore T and g haveia unique point oficoincidence. Moreover, T and g areiweakly

compatible, theniwe have T w = gw. Let T w = gw = v. Fromithe uniqueness

The above twoicases mean dbµ(T u,w) = 0, whichiimplies T u = w, thus T u =

w = gu. Therefore, T and g haveia coincidenceipoint u, and w is aipoint of coin-

cidenceiof T and g.

By Lemma 4.1.1, weiget dbµ(w,w) = 0. Supposeithat w1 is also aipoint of co-

incidence of T and g, theniwe can find u1 ∈ Y suchithat T u1 = w1 = gu1

and dbµ(w1, w1) = 0. Now, we prove dbµ(w,w1) = 0 by contradiction. Suppose

dbµ(w,w1) > 0, applying (3.1), we have
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ofithe point oficoincidence, weihave T w = gw = v = w, thatiis, T w = gw = w.

Therefore, T and g have aiunique common fixedipoint.

Letting g = Iy (identity mapping) iniTheorem 4.2.1, we can getitheifollowing.

Corollary 4.

Let (Y, dbµ) be aicomplete extended b-metric-likeispace and µ : Y×Y → [1,∞),iand

T : Y → Y be aimapping. If thereiexists γ ∈ C such that

dbµ(T y, T z) ≤ γ(F (y, z))F (y, z) for any y, z ∈ Y,

where

F (y, z) =
1

{µ(y, z)}2
[dbµ(y, z) + |dbµ(y, T y)− dbµ(z, T z)|],

then T has a uniqueifixed point.

If weitake µ(y, z) = b in corollary 4, we haveitheifollowing.

Corollary 5.

Let (Y, db) be aicomplete b-metric-likeispace and b ≥ 1, and T : Y → Y be

aimapping. If thereiexists γ ∈ C suchithat

db(T y, T z) ≤ γ(F (y, z))F (y, z) for any iy, z ∈ Y,

where

F (y, z) =
1

b2
[db(y, z) + |db(y, T y)− db(z, T z)|],

then T has aiunique fixedipoint.

Taking b = 1 iniCorollary 5, weihave theifollowing.

Corollary 6.

Let (Y, σ) beia completeimetric-like spaceiand T : Y → Y be aimapping. If

thereiexists γ ∈ C suchithat

σ(T y, T z) ≤ γ(F (y, z))F (y, z) for any iy, z ∈ Y,
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where

F (y, z) = σ(y, z) + |σ(y, T y)σ(z, T z)|,

then T hasia unique fixedipoint.

If weitake µ(y, z) = b iniTheorem 4.2.1, we haveitheifollowing.

Corollary 7.

Let (Y, db) beia b-metric-likeispace withicoefficient b ≥ 1, and T , g : Y → Y

beitwo mappingsiwith T Y ⊆ gY and gY isicomplete. If theipair (T , g) is a TgF -

contractioniof Geraghtyitype, then T and g haveia unique point oficoincidence.

Iniaddition, if T and g are weaklyicompatible, then T and g haveia unique com-

monifixed point.

Taking b = 1 in corollary 7, weihave theifollowing.

Corollary 8.

Let (Y, σ) be aimetric-likeispace and T , g : Y × Y → Y be twoimappings with

T Y ⊆ gY and gY isicomplete. Supposeithat thereiexists γ ∈ C suchithat

σ(T y, T z) ≤ γ(Fg(y, z))Fg(y, z),

where

Fg(y, z) = σ(gy, gz) + |σ(gy, T y)− σ(gz, T z)|,

then T and g have aiunique point oficoincidence. Iniaddition, if T and g areiweakly

compatible, then T and g haveia unique commonifixed point.

Example 4.2.1.

Let Y = {0, 1, 2}. Define dbµ : Y × Y → R by dbµ(0, 0) = 0, dbµ(1, 1) =

3, dbµ(2, 2) = 1, dbµ(0, 1) = dbµ(1, 0) = 8, dbµ(0, 2) = dbµ(2, 0) = 1, dbµ(1, 2) =

dbµ(2, 1) = 4, be aicomplete extended b metric likeispace with θ : Y × Y → [1,∞)

by

θ(y, z) =
y + z + 1

y + z
.

Consider T : Y → Y as

T 0 = 0, T 1 = 2, T 2 = 0.
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Take

γ(s) =


1

1 +
s

100

, s > 0,

1

3
, s = 0.

By the following cases, we prove

dbµ(T y, T z) ≤ γ(F (y, z))F (y, z) for any iy, z ∈ Y,

where

F (y, z) =
1

{µ(y, z)}2
[dbµ(y, z) + |dbµ(y, T y)− dbµ(z, T z)|].

(case 1): (x, y) = (0, 0)

dbµ(T x, T y) = dbµ(T 0, T 1)

= dbµ(0, 0)

= 0

F (x, y) = F (0, 0) = 0

γ(F (0, 0)) =
1

3

dbµ(T 0, T 1) = 0

= γ(F (0, 0))F (0, 0)

= 0

(case 2): (x, y) = (1, 1)

dbµ(T x, T y) = dbµ(T 1, T 1)

= dbµ(2, 2)

= 1

F (x, y) = F (1, 1) = 4

γ(F (1, 1)) =
25

26
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dbµ(T 1, T 1) = 1

< γ(F (1, 1))F (1, 1)

=
50

13

(case 3): (x, y) = (2, 2)

dbµ(T x, T y) = dbµ(T 2, T 2)

= dbµ(0, 0)

= 0

F (x, y) = F (2, 2) =
16

25

γ(F (2, 2)) =
625

629

dbµ(T 2, T 2) = 0

< γ(F (2, 2))F (2, 2)

=
400

629

(case 4): (x, y) = (0, 1)

dbµ(T x, T y) = dbµ(T 0, T 1)

= dbµ(0, 2)

= 1

F (x, y) = F (0, 1) = 3

γ(F (0, 1)) =
100

103

dbµ(T 0, T 1) = 1

< γ(F (0, 1))F (0, 1)

=
300

103
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(case 5): (x, y) = (0, 2)

dbµ(T x, T y) = dbµ(T 0, T 2)

= dbµ(0, 0)

= 0

F (x, y) = F (0, 2) =
8

9

γ(F (2, 2)) =
225

227

dbµ(T 0, T 2) = 0

< γ(F (0, 2))F (0, 2)

=
200

227

(case 6): (x, y) = (1, 2)

dbµ(T x, T y) = dbµ(T 1, T 2)

= dbµ(2, 0)

= 1

F (x, y) = F (2, 2) =
63

16

γ(F (2, 2)) =
1600

1663

dbµ(T 1, T 2) = 1

< γ(F (1, 2))F (1, 2)

=
6300

1663

From the above discussions, we know that

dbµ(T y, T z) ≤ γ(F (y, z))F (y, z) for any iy, z ∈ Y,
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where

F (y, z) =
1

[dbµ(y, z) + |dbµ(y, T y)− dbµ(z, T z)|].
{µ(y, z)}2

By Corollary 4, weiobtain that T has a uniqueifixed point, 0 isitheiunique fixed

point ofiT .



Chapter 5

Conclusion and Future Work

The dissertation comes to its end in the following manners:

• The dissertation is started with brief introduction, pointing out the history

and work done by many mathematicians related to the article.

• As supportive material, some abstract spaces like metricispace, partialimetric

space, b-metricispace and metric-likeispace, convergence, completeness and

Cauchy criteria are elaborated with proper examples.

• A section is mentioned for brief discussion on fixed point theory. This helps

to understand theiexistence andiuniqueness of the fixedipoint in main results.

• Differentimappings are also elaborated for better understanding, that are

used in the main results.

• The idea of commonifixed point inithe sense of metricispaces, b-metricispaces

andimetric-likeispaces under specific contraction mappings is demonstrated.

The work of Yu et al. [25] “Common fixed point theorems for TgF -contraction

in b-metric-like spaces” is investigatediwith detailed description.

• In future,
63

• Oneiresult in theisetting of extended b-metric-likeispaces is established. The-

se results are theiextensions of the results presented by Yu et al. [25].
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i. The application of given result can be provided.

ii. Using the idea of extended b-metric-like space, one can establish further

results.

iii. The idea of new-extended b-metric-like space can be incorporated.
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