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Abstract

Motivated by the idea of b-metric-like spaces and extended b-metric spaces, the idea
of extended b-metric-like spaces is introduced in this dissertation. The idea of 7,x-
contraction is introduced by Yu et al. recently. Authors presented some common
fixed point results on such mappings. Meanwhile extended b-metric spaces are
introduced by Kamran et al. with certain fixed point results. Combining the
both ideas a theorem on common fixed point is proved on extended b-metric-like
space. These results generalize many already existing results. An example is also

provided to validate the result.
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Chapter 1

Introduction

1.1 Background

Mathematics has an important role in scientific knowledge that is why it is called
mother of all the other sciences. Mathematics has a lot of applications for hu-
mans in every field of life. Mathematics is divided into many branches and each
branch has its own significance. One of the important branches of mathematics is
known as functional analysis. In the early decades of twentieth century, functional
analysis is originated from classical analysis. Mainly, vector space and different
operators are focused in functional analysis. It is also related to topology, abstract
linear algebra and modern geometry. It is originated from approximation theory,
calculus of variations, ordinary and partial linear differential equations and linear
integral equations has great impact on the development of modern ideas. At its
earliest stage, it was used to solve differential equations and has many wide ap-
plications for non-linear problems. Recently, functional analytic methods are very
useful in different areas of mathematics.

In functional analysis, fixed point theory is a valuable and dominant theory. Fixed
point theory provides sufficient conditions for the existence of solution of different
problems. The concept of fixed point theory has a lot of applications in different
fields of science, such as in the area of numerical analysis, polynomial interpola-

tion, error estimation, optimization theory, mathematical economics, variational
1



Introduction 2

inequalities, approximation theory and finite difference methods.

Poincare [1] was the first mathematician who studied the field of fixed point the-
ory in 1886 and substantiate various fixed point results. Later on Brouwer [2]
considered the equation T'(n) = n and established the solution of this equation
by proving a fixed point theorem in 1910. He also worked to prove fixed point
results for the shapes like square and a sphere. In 1922, a notable mathematician
Stephan Banach [3] demonstrated a significant fixed point result in the field of
functional analysis acknowledged as Banach contraction principle. This result is
declared to be the most fundamental in the field of fixed point theory. The two
remarkable applications come from this principle. The first one is that it guar-
antees the existence and uniqueness of fixed point of a contraction mapping. The
second and the very emotive one is that it developed an approach to determine
the fixed point of a contractive mapping. This principle occupies a significant
part in the field of functional analysis. Afterwards, Banach contraction principle
has been extending in various directions. Different mathematicians used different
approaches to extend this principle, by either replacing the contraction condition
or taking the different spaces [4-7].

Nadler [8] also extended the Banach contraction principle from single valued to
multivalued contraction mappings. On the other hand few authors used different
spaces like pseudo metric space [9], metric like space [10], partially ordered space
[11]. The b-metric space is one of the interesting generalization of the metric space
which was initiated by Bakhtin [12] and Czerwik [13]. They established the idea
of b-metric space and then used the same idea to set up some fixed point theorems
for generalizing the Banach contraction principle.

Huang [14] introduce cone metric spaces and prove some fixed point theorems
of contractive mappings on cone metric spaces. Many fixed point theorems are
generalized on cone metric spaces [15-17]. An interesting generalization of metric
space is established by Ma et al. [18] known as C* valued metric space. Many
researcher extended a number of fixed point results in this metric [19-21].

In 2013, on the basis of the concepts of b-metric space, partial mretric space and
metric like space, Alghamdi et al. [22] introduced b-metric-like spaces. By pro-

viding some supportive results, authors proved fixed point results in expansive
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mappings. They also worked on the b-metric like spaces which are partially or-
dered and proved fixed point theorems. In 2014, Zhu et al. [23] introduced the
notion of qausi b-metric-like spaces. He also gives the criteria for the convergence
and completeness, and proved some results showing fixed points in qausi b-metric-
like space. While in 2015, Chen et al. [24] also worked on b-metric like space and
he generalizes many related results.

In 2018 Yu et al. [25] introduce a new concept of T,p-contraction in b-metric-
like spaces and investigate some fixed point theorems about such contraction. Con-
currently Kamran et al. [26] introduce the concept of extended b-metric space
and establish some fixed point theorems for self-mappings defined on such spaces.
Many researcher worked on this new notation and extended already existing results
in literature [27-29]. In this dissertation, the main focus is to work on b-metric like
space its examples, completeness, convergence and common fixed point theorems
for 7,p-contractions in b-metric-like spaces. The detailed review of article “Com-
mon fixed point theorems for 7,p-contractions in b-metric-like spaces” Yu et al. [25]
is presented. By using concept of b-metric like spaces, extended b-metric spaces and
Tyr-contractions in b-metric-like spaces the definitions of extended b-metric like
spaces have been introduced in this thesis. The concept of 7,p-contractions in ex-
tended b-metric-like spaces is established. A result regarding common fixed point
theorems about such contractions in extended b-metric-like spaces is provided with

an example. This result generalize the result of Yu et al. [25].

1.2 Thesis Layout

Following are the details of work, which have been done this thesis.

1. Chapter 2:
This chapter consists of brief literature review of metric fixed point theory.
Focus is on basic notations, definitions and results regarding metric spaces.
This chapter includes seven sections. First section contains the definitions
and examples of metric spaces. Second sections include some mappings on

metric space. Section third to sixth include the definitions and examples of
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different spaces. The last section contain Banach contraction principle and

its generalizations on different spaces.

2. Chapter 3:
This chapter contains the detailed review of article “Common fixed point

theorems for 7, p-contractions in b-metric-like spaces” by Yu et al. [25].

3. Chapter 4:
In this chapter motivated by the idea of extended b-metric spaces the def-
inition of extended b-metric like space was introduced. 7,p-contraction in
extended b-metric-like space is also introduced. Some fixed point theorems
for T,p-contraction on extended b-metric-like space is presented which gen-

eralize many already existing results.

4. Chapter 5:

The conclusion is given in this chapter.



Chapter 2

Preliminaries

In this chapter we will recall some initiatory definitions and examples from the
evaluation of extended b-metric-like spaces. The main intent of this chapter is
to present the elementary results, definitions and examples that will be used in

the subsequent chapters.

2.1 Metric Space

Functional analysis is an important branch of mathematical analysis which is orig-
inated from classical analysis. Its development started about more than a century
but now a days functional analytic methods are used in various fields of applied
mathematics and other sciences.

In abstract approach one usually start from a set of elements satisfying certain ax-
ioms. The theory then construct of logical consequences which results from axioms
and derived as therefore once or for all. The idea of using abstract spaces in
a systematic manners goes back to M. Frechet (1906) and is justified by its enor-
mous use in different fields. In this chapter we consider metric spaces, which are
fundamental in functional analysis because they have a similar role to real line R
in calculus . In fact it generalizes R and provide a basis for uniform treatment of
important problems in various branches of analysis.

The concept of metric space and related ideas are discussed in the upcoming sec-
5
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tion along with suitable examples.

Definition 2.1.1. Metric Space

“A metric space is a pair (X, d), where X is a non-empty set and d is a metric on
X, i.e., a function defined on X x X such that for all z,y, z € X we have:

(M1) d is real-valued, finite and nonnegative;

(M2) d(z,y) =0if and only if z =y;

(M3) d(z,y) =d(y,z);

(M4) d(z,y) < d(z,2) + d(z, y);

The pair (X, d) is called metric space on X.”[30]

Example 2.1.1.
Let X = Cfa,b] be set of all real valued continuous function on interval [a,b]. A
mapping d : X x X — R given by

d(a, B) = max |a(t),B(t)] V a8 € X,

t€la,b]

then d is metric on X.

Example 2.1.2.
Let X be set of all bounded sequences of complex numbers; i.e every element of X

is a complex sequence

r = (0,09, Q3, ... ) briefly z = (o)

such that forall j = 1,2,3.... we have |a;| < ¢, where ¢, is a real number. we

define a metric d : X x X — R by

d(z,y) =sup |og — B
jeEN
where y = (f;) € X and sup denotes the supremum (the least upper bound) with
N={1,2,3,...... }. The metric space thus obtained is generally denoted by [*°.

Example 2.1.3.
Consider a set Y which is non empty, it can be made a metric space (Y, dp), where

do:Y xY — R is a function
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0 m =1z
L m #mn

do(nlﬂlz) =

(M1), (M2)and (M3) are satisfied obviously.

(M4.) In order to prove the rectangular inequality

i If gy = ny =3, then do(m,m2) = 0,do(m,m3) = 0,do(n2,m3) =0

= do(n1,m3) = do(n1,m2) + do(12,713). (2.1)

—
—

- I # o = ns3, then do(mr,m2) = 1,do(m1,m3) = 1,do(n2,m3) =0

= do(n1,m3) = do(n1,m2) + do(12,13). (2.2)

iii. If gy = no # m3, then do(n1,m2) = 0,do(n1,m3) = 1,do(n2,m3) =1

= do(n1,m3) = do(n1,m2) + do(12,13). (2.3)

- I # o # s, then do(m, m2) = 1,do(m1,m3) = 1,do(n2,m3) =1

i

<

= do(n1,m3) < do(n1,m2) + do(72,13). (2.4)

From Equations (2.1), (2.2), (2.3) and (2.4), we conclude that

= do(mi,m3) < do(m,m2) +do(m2,m3). Y mi,m,m3 €Y.

Hence dj is a metric on Y. It is called discrete metric and has special properties.

In fact, for each positive integer m, d,, : Y x Y — R is a function

0 m =12

A (M1, 12) =
m m #ng,m € LT

is a discrete metric on Y. Also we can call it generalized discrete metric.
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Definition 2.1.2. Open and Closed Ball
“let (X,d) be a metric space the set

S(xo,r) ={x € X : d(xo,x) <1}, where r >0

is called an open ball of radius r and centre x,.

The set

S(xo,7) ={x € X : d(zo,x) <1}, where r >0

is called closed ball of radius r and centre x,.” [31]

Definition 2.1.3. Open and Closed Set
“A subset M of a metric space X is set to be open if it contains a ball about each
of its point. A subset K of x is said to be closed if its complement is open, that

is, KY = X — K is open.” [30]

Example 2.1.4.

The closed interval [1,2] of real numbers R is a closed set.

Example 2.1.5.
Consider (X, d) be a metric space the set

S(xo,r") ={x € X :d(x,,x) <71}, where 7' >0
is an open set.

S(xo,m) ={z € X : d(xo,2) <7'}, where ' >0
is a closed set.

Example 2.1.6.
Let (X,d) be a metric space then each singleton set {u} is a closed subset of M.

Hence every finite set is closed.
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Example 2.1.7.
Consider X = R?, define d: X x X — R by

d(z,y) = V/(x1 — 22)> + (11 — 12)?

then the set
§ = {(w.y) € X 1a?+y* <1}

is and open set.

Definition 2.1.4. Neighbourhood
“Suppose that (X, d) is a metric space. We call a set U a neighbourhood of z € X
if there exists an open set V C U with z € V.”[32]

Definition 2.1.5. Convergence of a Sequence
“Suppose (z,), n € N is a sequence in a metric space (X, d). We say zg is a limit
of (x,) if for every neighbourhood U of xq there exists ng € N such that z,, € U

for all n > ng. We write

ro = lim z,, or z,, — x as n — oo.
n—o0
If the sequence has a limit we say it is convergent, otherwise we say it is divergent
sequence.” [32]
Definition 2.1.6. Cauchy Sequence

“A sequence (z,,) in a metric space (X, d) is said to be Cauchy if for every ¢ > 0

there is an N = N(¢) such that

(T, ) < €, for every m,n > N. ”[30]

Definition 2.1.7. Completeness
“The space (X, d) is said to be complete if every Cauchy sequence in X converges

in X.”[30]

Example 2.1.8.

1
Consider X = R, and consider a sequence {a,,} = —, with
n

d(aaﬁ) = |O'/_B|>
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then {a,} is convergent and lim d(c,,0) = 0. Now consider € > 0, choose N > —,
n—00 €

then for any n,m > N,

1 1 1 1
o< I+ =
nom nom
- 1+1
N N

<e+e

2 2

Therefore {«,} is a Cauchy sequence.

Example 2.1.9.

Consider X = R, and consider a sequence {«,} = %, with
d(()@ﬁ) = |Oé - B|

Consider € > 0, choose N > \/g, then for any n,m > N,

n?—1 m?—1 1 1
2 T | ST
1 1
<m+m

2

:m

< €.

Therefore {,} is a Cauchy sequence.

Example 2.1.10.

(i) The closed interval [0, 1] in R is a complete metric space with usual metric on

R.

(ii) Every finite dimensional metric space is complete.

(iii) Closed subspace of a complete space is complete.

Remark 2.1.1.

Every convergent sequence is Cauchy sequence but converse is not true.
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Definition 2.1.8. Topology

“A topology on a set X in a family F of subset of X which satisfies the following
axioms:

(1) ¢ and X are in F.

(2) The union of any sub collection of F is a member of F.

(3) The intersection of any finite sub collection of F is a member of F.

Together the pair (X, F) is called a topological space.” [33]

Example 2.1.11.
let X = {0,1} then if we let F = {¢,{0},{1}, X, } then (X,F) is a topological
space. This is true because (1) can be verified by inspection, (2) and (3) required

that certain subset of X are elements of F, but if we can choose F to be all subset

of F, which make (2) and (3) hold.

Definition 2.1.9. The Metric Topology
“The metric topology on a metric space M is the topology obtained by taking as
open sets the collection of all sets I in M which have the property S € F provided

each point x € S is the center of some open ball U(x,r) (for » > 0), which also

lies in S.”[33]

Example 2.1.12.
Consider X = R with metric d = |z — y|, we can generate collection of open sets

as

r={UCR:VzeU3I(z—ex+e CU},

then 7 satisfy all the conditions of topology. so, 7 is called metric topology.

2.2 Some Mapping on Metric Space

This section addresses some important mappings on metric spaces. These map-

pings play a fundamental role in the field of fixed point theory.

Definition 2.2.1. Continuous Mapping
“Let (X,dx) and (Y, dy) be metric spaces and A C X. A function f: A — Y is
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said to be continuous at a € A, if for every € > 0, there exists some § > 0 such

that

dy(f(x), f(a)) < € whenever z € A and dx(z,a) <. (2.5)
If f is continuous at every point of A, then it is said to be continuous on A.”[31]

Remark 2.2.1.

(i) If one positive number § satisfies this condition (2.5), then every positive number
01 < ¢ also satisfies it. This is obvious because whenever = € A and d,(z,a) < 41,
it is also true that € A and d,(z,a) < §;. Therefore, such a number ¢ is far from
being unique.

(ii) If @ is a limit point of A and {z,} is a sequence of points of A such that x,, — a,

it follows from the continuity of f at a that f(x,) — f(a).

Example 2.2.1.
Consider X = R and a mapping T : X — X defined on a usual metric space (X, d)
as follows:

T(xr) = 2° where 2 € X,

then 7' is a continuous mapping.

Example 2.2.2.
Consider X = R and (X, d) be a metric space and I : X — X be an identity

function, then I is continuous on R.

Example 2.2.3.
Consider (U, dy) be a discrete metric space. Then any map 7' : U — V is continu-

ous. For every € > 0 we choose 6 = 1. Then

B(z,0) = B(z,1) = {z}

for all x € U and the condition T'(z) € B(T(z), €) is obviously satisfied.

Definition 2.2.2. Lipschitzian Mapping
“Let (X, d) be a metric space. A mapping 7" : X — X is said to be Lipschitzian

if there exist a constant o > 0 with
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d(T(x), T(y)) < ad(x,y) for all z,y € X.

Notice that a Lipschitzian map is necessarily continuous. The smallest « for which
above inequality holds is said to be Lipschitz constant for 7" and is denoted by
L.7]34]

Example 2.2.4.
Consider set of real numbers R with usual metric d(ly,1ls) = |l; — l3|, V 11,15 € R.

A mapping 7' : R — R define by 7' (1) = 2I, then

d(T (1), T (Is)) = d(20,, 2ly)

= |2, — 20|
= 2|1 — ]
== 2d(l1,l2)

So, T is a Lipschitzian mapping and its Lipschitz constant is 2.

Definition 2.2.3. Contraction Mapping
“Let X = (X, d) be a metric space. A mapping 7' : X — X is called a contraction

on X if there exist a positive real number a < 1 such that for all z,y € X
d(T(x), T(y)) < a d(z,y)

Geometrically this means that any point z and y has images that are closer to-
d(T(z),T(y))

does not
d(z,y)

gether than those points  and y; more precisely, the ratio

exceed a constant o which is strictly less than 1.”[30]

Example 2.2.5.
Consider X = [0, 1] with usual metric. A mapping 7': X — X define by

Then
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A(T (@), T () < {d(r.y)

1

hence, T' is contraction mapping with contraction constant o = ;.

Example 2.2.6.

Consider (X, d) be a metric space and

then define a mapping 7" : X — X by

T<¢):§+3

o) = |(24) - (£+9)
:‘<z> v

5 5
1
:g|¢—¢|

= ——1<1
o =
5 '

1
then T is a contraction with o = R < 1.

Definition 2.2.4. Contractive Mapping
“Consider (X, d) be a metric space and F be a self map on X then, F' is called a

contractive mapping if, for all o, f € X

d(F(a), F(8)) < d(a, )
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where « # 5.7 [34]

Example 2.2.7.
1
Let X = [1,00) with usual metric d. A mapping T : X — X define by T (u) = —,
u
then

u—v

1

u— v

< |lu—n|
= d(u,v)
=d(T (u),T (v)) <d(u,v) ¥ u,veX,
which implies T is contractive mapping.
Example 2.2.8.

Consider X = R and (X, d) be usual metric space. Let T' be a self-mapping on X
defined by

1
Ta)=a+— , VaelX, (2.6)
then 7' is contractive but not a contraction.

Definition 2.2.5. Non-Expansive Mapping
“Let T': X — X be a mapping on metric space (X, d) into itself. We call T" a
non-expansive if,

d(T (), T(B)) < d(e, B)

for all o, € X.”[35]
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Example 2.2.9.
Let X = R with usual metric. A mapping 7' : X — X define by 7' (w) = w. Then

d(T (w1), T (ws)) = d(w1, w2)
= |wy — wa|

= d(thJQ)
= d(T (wl) ,T(wg)) = d(wl,wQ) A w1, We € X,

which implies 7" is non-expansive mapping.

Remark 2.2.2.

Contraction = Contractive = Non-expansive = Lipschitzian.

In past years many generalizations of metric space are introduced and discussed.
All these ideas intrigued many mathematicians to generalize various fixed point
theorems. Some very important generalizations of metric spaces will appears in

upcoming sections.

2.3 b-metric Space

The notion of b-metric space was firstly presented by Bakhtin [12] in 1989. Also
in 1993, Czerwik [13] gave its formal definition. Another mathematician Bourbaki
[36] also worked on this idea. This section includes the definition and examples of

the said space.

Definition 2.3.1. b-metric Space

“Let X be a nonempty set and dg : X x X — [0,00) be a function satisfying the
following conditions:

dgl : dg(z,y) =0 if and only if z = y.

dg2 : dg(z,y) = dg(y,z) for all x,y € X.

dg3 : dg(z,y) < s[ds(z, z) + ds(z,y)] for all x,y,z € X, where s > 1.
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The function dg is called a dg-metric and the space (X, dg) is called a dg-metric
space, in short, bMS.” [13]

Remark 2.3.1.
(i) For s = 1 the above definition reduce to the definition of metric space.

(ii) In general b-metric is not a continuous function.
Example 2.3.1.

Let Y =[0,1] and dg : Y x Y — [0,00) be defined by

dﬁ(ylay2> = (y1 — 3/2)2 for all y1, 2 €Y

then (X, dg) is a b—metric space with s = 2.

Example 2.3.2.
Let (X, d) be a metric space. Then for a real number m > 1. we define a function

dg: X x X — R* by

this gives dg as a b-metric space with its coefficient £ = 2m~1.

For proof we will use the inequality

a+f m<am+ﬂm
2 - 2

(a+B)" < a™+ pm
2m - 2

(Oz—i—ﬁ)m §2m—1 (Oém—i—ﬁm).

dgl, dg2 are trivially satisfied, to prove dg3 we proceed as:

since for every a, 3,7 € X we get

dg () = (d (a, 7)™
< [dg (v, B) +dg (B,7)]™
< 2" d(a, B)" +d(8,7)™

< 2™ Vdg (a, B) + dg (8,7)] .
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Hence djs is a b-metric space with coefficient 2™,

Definition 2.3.2. Convergent, Cauchy Sequence and Completeness

“Let (Y, dg) be a b-metric space. A sequence {a,} in Y is said to be:

(i) Cauchy if and only if

lim dg(am,o,) =0 as m,n — oo.
m,n—o0

(ii) Convergent if and only if there exist v € Y such that
dg(an, ) =0 as n — oo,

and we write

lim o, = a.
n—0o0

(iii). The b-metric space (Y, dg) is complete if every Cauchy sequence is convergent

in ds.”[26]
2.4 Extended b-metric Space

This section is dedicated to the notion of extended b-metric space. Kamran et al.
[26] introduced a new type of generalized b-metric space and termed it as extended

b-metric space.

Definition 2.4.1. Extended b-metric Space
“Let X be a nonempty set and 6 : X x X — [1,00). A function dy : X x X — [0, 00)

is called an extended b-metric if, for all x,y, 2z € X, it satisfies

(dol) : dy(x,y) =0 iff x = y;
(do2) = do(z,y) = do(y,2);

(dg3) = do(w,y) < 0(2,y) [dyg(2, 2) + do(2, y)]-

The pair (X, dy) is called an extended b-metric space, in short extended-bMS.” [26]
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Remark 2.4.1.
(i) If O(x,y) = s for s > 1, then we obtain the definition of b-metric space.

(ii) Further if 6(z,y) = 1, then we obtain the definition of metric space.

Example 2.4.1.
Let Y =10,1]. Define 0 : Y x Y — [1,00) as,

»,Yy2) — ———— -
Y1+ Y2

Also introduce dg : Y x Y — [0, 00) as

1
- \V/ Y1, Y2 € (07 1]7 U %y%
do(y1,12) = § Y192

0 v 3/171/26 [071]7 Y1 = Y2

with
1
do(y1,0) = dp(0,91) = — V¥ w1 € (0,1],

U1

then (Y, dy) is an extended b-metric space.

Definition 2.4.2. Convergent, Cauchy Sequence and Completeness
“Let (X, dy) be an extended b-metric space.
(i) A sequence {z,} in X is said to converge to z € X, if for every ¢ > 0 there

exists N = N(¢) € N such that
dg(xp, ) < €

for all n > N. In this case, we write lim,,_,., x,, = x.
(ii) A sequence {z,} in X is said to be Cauchy, if for every ¢ > 0 there exists
N = N(e) € N such that

do(Tpm, xy,) < €

for all m,n > N.
An extended b-metric space (X, dy) is complete if every Cauchy sequence in X is
convergent. Note that, in general a b-metric is not a continuous functional and

thus so is an extended b-metric.” [26]
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2.5 Partial Metric Space

This section provides another generalization of metric space known as Partial
metric space. In 1980, the idea of Partial metric space is presented by Steve
Matthews [37]. Matthews was working in the field of computer science. For his
studies, he had to encounter the self distances which are non-zero. Matthews gave
a new idea of metric space in which the self distances are non-zero. His work was
first published in 1994. This section includes the definition and examples of partial

metric space.

Definition 2.5.1. Partial Metric Space

“A partial metric on a set X is a function p : X x X — R* such that for all
r,Y,z2 € X :
() z=y & plr,z) = plz,y) = p(y,y);
(p2) plz,z) <

(p3) p(x,y)

(pa) p(z,2) <

The space (X, p) is

7

+p(y, 2) = p(y, ).

(@, y);
Py, v);
p(e,y)

a partial metric space.” [38]

Example 2.5.1.
Consider X = R* define p: X x X — R* by

p(a, B) = max(a, §) ¥ a, f € R,
then (RY, p) is a partial metric space.

Example 2.5.2.
Let Y denotes the set of all intervals [«, 5], for any real numbers o« < (3. Let

p:Y xY — [0,00) be function such that

P ([0417 51] ) [0427 52]) = maX(ﬁl, 52) - miﬂ(al, 042),

then (Y, p) is partial metric space.

Definition 2.5.2. Convergent, Cauchy Sequence and Completeness

“Let (Y, p) be a partial metric space.
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(i). A sequence {o,} in a partial metric space (Y, p) converges to a point « € YV’
if and only if

pla,a) = lim p(a, az).

(ii). A sequence {a,} in a partial metric space (Y, p) is called a Cauchy sequence

lm  p(am, an),
m,n—o00

exist.
(iii). A partial metric space (Y, p) is called complete if and only if every Cauchy
sequence {a,} in Y converges to a point a € Y such that

pla,a) = lim  p(a,, o). [39]

2.6 Metric Like Space

The generalized form of partial metric space is metric like space. In 2012, the idea
of metric like space was presented by Amini-Harandi [10]. This section includes

the definitions and examples of metric like space.

Definition 2.6.1. Metric Like Space

“A mapping o : X x X — R*, where X is a nonempty set, is said to be metric-like
on X if for any z,y, z € X, the following three conditions hold true:

(1) ofz,y) =0=z=y;

(02) o(z,y) = oly, z);

(03) o(z,2) <o(z,y) +o(y,2).

The pair (X, o) is called a metric-like space. A metric-like on X satisfies all of the

conditions of a metric except that o(x,x) may be positive for z € X.”[10]

Remark 2.6.1.

Every partial metric space is a metric-like space but not conversely in general.

Example 2.6.1.
Let Y = {0,1}, and let
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2, ifa=p=0,
o(a,B) =
1, otherwise,
then (Y, 0) is a metric-like space, but since 0(0,0) £ o(0,1), hence (Y, o) is not a

partial metric space.

Example 2.6.2.
Consider the set X = [0,00), and 0 : X x X — R by

o(ay,as) = max {a,as},

we claim that o is a metric-like space as:

(1)

o(ay,as) = max{ay,a}t =0
=a;=ay=0

If the maximum is 0, then the other values of this function should must be less
than 0, which is not possible due to the given domain X = [0, 00). So, the other

values will also be 0.

(02)

o(ay,az) = max {a;,a} = max{as,a;} = o(as, a;)

(03)

o(ay,as) = max {a,as}
< max{ay, az, az}

< max{ay,as} + max {as, as}

So,

o(ay,a3) < o(ay,as) + o(az, as)

Definition 2.6.2. Convergent, Cauchy Sequence and Completeness

“A sequence {a,} in a metric-like space (Y, o) converges to a point « € Y if and
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only if

nl_l)r_iI_loo o(an,a) =o(a,a).

A sequence {a, } of elements of Y is called o-Cauchy if the limit " iliri . o (m, )
exists and is finite. |

The metric-like space (Y, o) is called complete if for each o-Cauchy sequence {a, },
there is some o € Y such that

lim o(an, o) =oc(a,a) = lim o(am,,a,).” [10]
n——+o0o m,n—+0o0o

2.7 Banach Contraction Principle (BCP) and its

Generalizations

Stefan Banach proved Banach contraction principle (BCP) in 1922. BCP is known

to be one of the fundamental outcomes of fixed point theory. The Banach contrac-

tion principle (BCP) provides us with a unique fixed point. Fixed point is a useful

tool in mathematics which can be used to prove the existence of solution of a differ-

ential equation, integral equation and eigenvalue equation. Fixed point theorems

play an important role in both pure and applied mathematics. Present section is

providing the definition and examples of fixed point and some classical fixed point

results.

Definition 2.7.1. Fixed Point
“A fixed point of a mapping 7' : X — X of a set X into itself is an = € X which
is mapped onto itself, that is,

Tr =x,

the image coincides with x.
Geometrically for a real valued function the fixed point of a mapping y = f(x) are
the points of intersection of graph of y = f(x) and line y = z. For example the

following graph shows the points of intersection of y = 2 and y = .
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y-axis
r>
3

2
y=x

1

-1

-2

-3

-

FIGURE 2.1: Three fixed points

The above graph represents a function having three fixed points.” [30]

Example 2.7.1.
Consider S =R and S : R — R be a mapping defined as

S has a unique fixed point s = 4.

do7 4 54 3 2 Ak 1 2 3 £ 5 H 7 i

FIGURE 2.2: One fixed point

Example 2.7.2.
Consider S =R and S : R — R be a mapping defined as

S(s) =s+3,



Preliminaries 25

S has no fixed point.

Ficure 2.3: No fixed point

Definition 2.7.2 (Weakly Compatible, Coincidence, Point of Coincidence
and Common Fixed Point).

“Let Y be a nonempty set, g and h be self-mappings on y and

B(g,h) ={y €Y : g(y) = h(y)}.

The pair g and h are called weakly compatible if

g(hy) = h(gy), for all y € B(g,h).

Furthermore v = ¢(y) = h(y) for some y € Y, then y is called coincidence of g
and h, and wu is called point of coincidence of g and h. If y = u, then wu is called

the common fixed point of g and h.”[40]

Example 2.7.3.
Let Y = R define g,h: Y — Y by

gly) =2y+1 | h(y) = 3y + 1

fory=0€Y = g(y) = h(y) =1 =u = y = 0 is coincidence of g and h, and

u = 1 is point of coincidence of g and h.
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Example 2.7.4.
Let Y =[0,1] define g,h: Y — Y by

fory=0€Y = g(y) = h(y) =0 =u, also g(hy) = h(gy) =0
g, h are weakly compatible, and u = 0 is point of coincidence of g and h.

As y =u = 0= 0 is common fixed point of g and h.

Theorem 2.7.3 Banach Contraction Principle

“Consider a metric space X = (X, d), where X # (). Suppose that X is a complete
and let T": X — X be a contraction on X. Then T has precisely one fixed
point.” [30]

Example 2.7.5.

Consider the metric space (R, d) where d is the usual metric, define as

d(e, B) = |a— Bl
The function f : R — R is define as
Q@
a)=—+Db
fla)="2
is a contraction if @ > 1. In this specific case we can find a fixed point, since a
fixed point means that f(a) = «, we want a = e + b. Solving for o gives us

a
ab

a—1

=

Example 2.7.6.
1 1
Consider a mapping ¢ : (0, Z) — (0, Z_l) where g(a) = o? is a contraction with

respect to the usual metric and has no fixed point. Infact,

gla)=a=a*=a=a’>—a=0,

=ala—1)=0=a=0,1.
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1
But both 0,1 ¢ (O, Z)

Definition 2.7.4. Compact Metric Space

“A metric space X is said to be compact if every sequence in X has a convergent
subsequence. A subset M of X is said to be compact if M is compact subspace of
X, that is, if every sequence in M has a convergent subsequence whose limit is an

element of M.”[30]

Edelstein [41] established the following fixed point result, popularly named as

Edelstein theorem.

Theorem 2.7.5

“Let (X, d) be a compact metric space, and let 7" be a mapping on X. Assume
d(Tz, Ty) < d(x,y) for all z,y € X

with « # y. Then T has a unique fixed point.” [41]

In 1992 Matthews [37] established the following fixed point result on partial metric

space.

Theorem 2.7.6 (The Partial Metric Contraction Mapping Theorem)
“For each complete partial metric p : X? — R, and for each function f : X — X
such that

J0<c<1forall z,y € X,

p(f (), f(y)) < cp(r,y)

then, there exist a unique a € X, such that
a = f(a), and p(a,a) =0." [37]

Czerwik [13] established the following fixed point result on b-metric space in 1993.

Theorem 2.7.7 (Extension of BCP on b-metric Space)
“Let (X, dg) be a complete b-metric space with constant s > 1 and suppose that
T : X — X satisfies

ds(Tx, Ty) < ¢(ds(x,y)),
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for all z,y € X, where ¢ : [0,00) — [0, 00) is increasing and

lim ¢"(t) =0,

n—o0

for each ¢ > 0, then T has a unique fixed point z* € X and

lim T"(x) = 2",

n—o0

for each x € X.”[13]

In 2017 Kamran et. al [26] established the following fixed point result on extended

b-metric Space.

Theorem 2.7.8 (Extension of BCP on Extended b-metric Space)
“Let (X, dy) be a complete extended b-metric space, such that dy is a continuous

functional. Let T : X — X satisfy:

do(Tx,Ty) < kdp(z,y) ¥V z,y € X,

where k € [0,1) be such that for each 2y € X,

lim 0(x,,z,) <
n,M—00

Y

o] =

here x, = T"x9,n = 1,2, ..... Then T has precisely one fixed point £&. Moreover

for each y € X, T"y — £.7[26]

Harandi [10] established the following fixed point result on b-metric space in 2012.

Theorem 2.7.9 (Extension of BCP on Metric Like Space)
“Let (X, 0) be a complete metric-like space, and let 7' : X — X be a map such
that

o(Tx, Ty) < p(M(z,y)),

for all x,y € X, where

M(z,y) = max {o(x,y),0(z,Tx),0(y, Ty),0(x, Ty),0(y, Tx),o(x,x),0(y,y)},
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where 1 : [0, 00) — [0, 00) is a nondecreasing function satisfying

P(t) <tVit>0, limy(s)<t, Vt>0and tlim(t—w(t)) = 00.

s—tt

Then T has a fixed point.” [10]

Example 2.7.7.
Let Y ={0,1,2}. Define 0 : Y x Y — R™ as follows:

o(0,0)=0, o(1,1) =3, 0(2,2) =1, ¢(0,1) = o(1,0) =7,

0(0,2) =0(2,0) =3, 0(1,2) =0(0,2) =4,

then (Y, o) is a complete metric-like space. Note that ¢ is not a partial metric on

Y because

0(0,1) #0(0,2) +0(2,1) — 0(2,2),

define the map 7': Y — Y by
TO=0, T1=2, and T2 = 0,

then
3 3
U(TxaTy) < Za(x7y> < ZM(xvy)

for each x,y € Y, hence all the required hypotheses of Theorem 2.7.9 are satisfied.

Therefore T" has a unique fixed point.



Chapter 3

Common Fixed Point Theorems

on b-metric-like Spaces

3.1 Introduction

In this chapter, we present the concept of 7,p-contraction and investigate some
fixed point theorems for such contraction in b-metric-like spaces. Moreover, an

example is given to support one of our results.

3.2 b-metric-like Space

This section is dedicated to the notion of b-metric-like Space.

Definition 3.2.1. b-metric-like Space

A b-metric-like on a nonempty set X is a function d, : X x X — [0, 00) such that,
for all a, 8,7 € X and a constant b > 1, the following three conditions hold true:
(bl): if dy(cr, B) = 0 then o = f;

(b2): dy(a, B) = do(B, );

(b3): dy(ev, ) < bldy(cr, B) + db(B,7)].

The pair (X, dp) is then called a b-metric-like space with coefficient b. [22]
30
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Remark 3.2.1.
Each b-metric-like d;, on X generalizes a topology 7, on X whose base is the family

of open b-balls
By(z,€) ={z € X : |dp(x, 2) — dp(z, x)| < €},

forall z € X and € > 0. [22]

Example 3.2.1.
We take Y = [0, 00). Consider dj, : Y2 — [0, 00), define a function by

dp(o, an) = (a1 + 042)27

then it is a b-metric-like space and its constant is 2.
(bl)and (b2) are obvious.
(b3):

dy(or, ) = (o) + ap)?
< (a1 + a3 + a3 + az)?
= (a1 + a3)® + (a3 + a2)® + 2(ay + a3) (a3 + @)
< 2[(a + a3)® + (a3 + az)?]
= 2[dp(an, a3) + dp(as, az)]

= db(Oél,Ozg) < 2[db(a1,oz3) +db(043,0z2>].
Hence, the given function is a b-metric-like space.
Since self distances is non-zero hence d,, is not a b-metric space.

Example 3.2.2.
Let M = [0,00). Consider d, : M? — [0, 00), define as

d, (a, B) = (max{a, B})Q’
then (M, d,) is a b-metric-like space and its constant is 2.

(bl)and (b2) are obvious.
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(b3):

dy(a,7) = (max{a,~})?

< (max{a, 8,7})
(max{a, 8} + (max{8,~})?
2[(max{a, 8})? + (max{s,7})?
= dy(or,7) < 2[dy(ax, B) + dp(B,7)].-

IN

IN

Hence, the given function is a b-metric-ike space.

Definition 3.2.2 (Cauchy, Convergence and Completeness).
A sequence {y,,} in a b-metric-like space (Y, d,) converges to a point y € Y if and

only if

db(y7 y) = mli_n)loodb(yv ym)

A sequence {y,} in a b-metric-like space (Y, d,) is called a Cauchy sequence if

lim oodb (y’m ym)

m,n—>

exists.
A b-metric-like space is called complete if every Cauchy sequence {y,} in Y con-

verges with respect to 7, to a point y € Y such that

lim dy(y, ym) = do(y,y)

m—ro0

= lim dp(Yn, Ym)- [22]

m,n—->00

3.3 Fixed Point Results for 7,,-Contraction of

Geraghty Type in b-metric-like Spaces
In this section, we introduce the concept of 7T,p-contraction and investigate com-

mon fixed point theorems for such contraction in b-metric-like spaces. Moreover,
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an example is given to support one of our results.
Definition 3.3.1.
Let C be class of all functions v : [0, 00) — [0, 1) that satisfy the condition:

lim v(t,) =1 implies lim (t,,) =0.

m—r0o0 m—r0o0

Theorem 3.3.2
Let (Y, d) be a complete metric space and S : Y — Y be a mapping. If S satisfies

d(S(u), S(v)) < ~(d(u,v))d(u,v) for any wu,v €Y,

where v € C, then S has a unique fixed point.[42]

Theorem 3.3.3
Let (Y, 0) be a complete metric-like space and S : Y — Y be a mapping. If there
exists v € C such that

o(S(u),S(v)) <~v(S(u,v))S(u,v) forall wu,veY,

where

S(u,v) = o(u,v)|o(u,Sy) — (v, Sy,)|,
then T has a unique fixed point.[43]

Lemma 3.3.1.
Let g and h be weakly compatible self maps of a set Y. If ¢ and h have a unique
point of coincidence u = g(y) = h(y), then u is the unique common fixed point of

g and h. [40]

Proof.

Since u = ¢g(y) = h(y) and g and h are weakly compatible, we have g(u) =
g(hy) = h(gy) = h(u): i.e., g(u) = h(u) is a point of coincidence of g and h. But
u is the only point of coincidence of g and h, so u = g(u) = h(u). Moreover if
v = g(v) = h(v), then v is a point of coincidence of g and h, and therefore v = u

by uniqueness. Thus u is a unique common fixed point of g and h. O
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Definition 3.3.4. 7,7-Contraction

Let (Y,d,) be a b-metric-like space with coefficient b > 1 and T,g : ¥V — Y
be two mappings. We say that the pair Ty r is a T p-contraction of Geraghty type
if there exists v € C such that

do(Ty, Tz) < v(Fg(y,2))Fg(y,z) for ally,z € Y, (3.1)

where

Fyly,z) = le [dy(gy, 92) + |do(gy, Ty) — dp(g2, T 2)|] . [25]

Lemma 3.3.2.
Let (Y, d,) be a b-metric-like space, T and g be self-mappings on Y such that (7, g)
is a Typ-contraction of Geraghty type. If w € Y is a point of coincidence of 7" and

g, then dy(w, w) = 0. [25]

Proof.
Suppose that w € Y is a point of coincidencevof 7 and g, then there exists v € Y
such that Tv = gv = w.

Assume dp(w,w) > 0, we get
dy(w, w) = dp(Tv, Tv) < 7(Fg(v,v))Fg(v,v),

since

1

1
b2 [db(9v, 9v) + |db(gv, Tv) — db(gv, TV)|] = 5 db(w, w)

Fg("U,'U) = b2

then we have

1
db<w7 U)) < b_2db<w’ 'lU),

which is a contradiction, hence d,(w,w) = 0. O

Theorem 3.3.5
Consider (Y, d) be a b-metric-like space with coefficient b > 1, 7,9 : Y — Y be
two mappings with 7Y C ¢gY and gY is complete. If the pair (7,g) isa T,p-

contraction of Geraghty type, then 7 and g have a unique point of coincidence.
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In addition, if 7 and ¢ are weakly compatible, then 7 and ¢ have a unique com-

mon fixed point. [25]

Proof.

For an arbitrary yy € Y, since TY C gY, we can construct a sequence {x,,} by

Tm = 9Ym = Tym—l (32)

for all m € Z*. Now, we prove that 7 and g have a point of coincidence. If
there exists some my € Z7T such that dy(Zmg, Tmer1) = 0, then x,, = Zygt1,
which implies gym, = T Ym,, thus, x,,, is a coincidence point of T and g, so vy =
9Yme = T Ym, 18 a point of coincidence of 7 and g. We assume that dy(x,,, Tpmi1) >

0 for all m € mathbbZ*. From (3.1), we have

db(xmu xm—l—l) - db(Tym—la Tym) (3 3)

S ’Y(Fg(ymfla ym))Fg<ymfla ym)
where

1
Fy(Ym—1,Ym) = b—Q[db(gym_l,gym) + |dy(9Yms T Ym—1) — do(9Yms T Ym)|]

1
= b_2[db<xm717 xm) + |db<xm717 xm) - db(xnm xm+1)H

Assume that there exists my € z* such that

db<xmo—1a xmo) S db('r’moa xmo)

By (3.3), we get

db(l‘mo; xmo) - db(Tym0—17 Tymo)
< AEGYmo—15 Ymo) ) FG(Ymo—1, Ymo)
< Fg(ym0*17ym0)

1
= ﬁ[db(gymo—ugymo) +1db(9Ymo—15 T Ymo—1) — db(gYma> T Yrmo )]
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1
- ﬁ[db(‘rmo—lv‘rmo) + |db(l‘m0_1,l‘m0) - db(xmmxmo-&-l)H

1
G

S db(xm()? $m0+1)7

Ap(Timg, Trmgr1))

which is a contradiction. Thus, we obtain

db<xm0*17 xmo) > db(xmov .Tm0+1) (34)
for all m € Z™. Therefore, there exists ¢ > 0 such that

lim dp(Tmg—1,Tmg) = € (3.5)

m— 00

(3.3) and (3.4) yield that

db(l’m, xm—&-l) = db(Tym—b vym)
<AEF 9 Ym=1,Ym)) F 9 Ym-1, Ym)

_ . [1(2db(xm_1, )y (2, T+ 1))] . b1 2y (o1, 2m) — (s T )

b2 by
1
S Y |:b2(2db(xmla l'm)db(Im, Tm + 1)):| ~(2db($m717 mm) - db(xma zm+1)

< 2db(xm—la xm) - db(l'm, xm+1)

(3.6)
Taking m — oo in (3.6), we get

de(xm—la xm) - db(mmv xm—i—l)

am = -
hence,
lim de($m,1, IL’m) - db($m> $m+1> —0.

On the other hand,

- 2dy(Tr1, T) — dp(Tny Ting1) €2
P b2 )
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therefore ¢ = 0. Hence,

lim dy(zm_1,Tm) = 0. (3.7)
m—0o0
Now we prove that
lim dy(z,,x,) =0. (3.8)
n,Mm—00

If (3.8) does not hold, then there exists ¢ > 0, for which we can find two subse-
quences {,(;} and {ym(;)} of {ym}, where n(j) is the smallest index for which
n(j) > m(y) > j with

dp(xn(7), 2m (7)) 2 €, ()1, 2m (7)) < €. (3.9)

Applying (3.1) and (3.9), we have

€ < dp(Tn(j), Tm(j))
= dy(TYn()—1: T Ym(i)—1)

< V(Fg(yn(j)—la ym(j)—1>Fg(yn(j)—17 ym(j)—l)

(3.10)

< Fy(Yn(j)—15 Ym(i)—1)5

where

1
Fy(Yn()—15 Ym()-1) = W [db(9Yn()—1, 9Ymi)-1) + 1de(9Ymi)—1: T Ym—-1) = do(9YmG)—1: T Ym(i)-1)|]

1
= 35 [ (@001, Tm) 1) F 1db(Taig) 1 Tn) ) (@mg) 1, T ] -

(3.11)
Next we discuss two cases.
Case 1: Case of b > 1. Applying (3.7), (3.10), and (3.11), we obtain
|
e < liminf —dy(2nj)-1, Tm()-1)- (3.12)

m—oo b2

Moreover, from (3.9), we have
A (Tn()—15 Tm()-1) < bdp(Tn()—1; Tm(s)) + 0y (Tm(s), Tm(i)—1)

< be + bdb($m(j), xm(j)—l)-
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Taking lim in the above inequalities, we have
m—0o0
I%Igloréf dp(Tn(j)—1, Tm(j)—1) < be (3.13)
(3.12) and (3.13) imply € < g, which is a contradiction.
Case 2: Case of b = 1. From (3.9), we have
€ < dy(Tn(j), Tm(y))
S d (xn 1)+db($n 1, Tm )+db($m —1, Tn(j )
()— () () (3.14)
< d (:En y Ln(§)— 1) + db(in(j) 15 Tm(j + de(mm -1 xm(]))
d (xn(k 1) +6+2db(l’m —15 Tm(j ))
By (3.7), taking lim in (3.14), we have
m—00
n}g%o dp(Tp ()15 Tm(j)-1) = € (3.15)
Since b = 1, by (3.10) and (3.11), we have
€ < Y(EG(Yn(k)—15 Ymk)—1)) F I (Ynk) 15 Ym(k)—1)
(k) (k) (k) (k) (3.16)
< dy(Tnky—1, Trme)—1) 1o (Trk) =1, Tne) ) Ao (Tm)—15 Tmr)) |-
(3.7), (3.15) and (3.16) yield
nll_rgo Y(F9(Ynk)y—15 Ymk)—1)) F9WUnti) =1, Ymk)—1) = € (3.17)

From (3.11) and (3.15), and taking b = 1 into account, we get

lim Fg(yn(k)—hym(k)—l) =6

m—00

which together with (3.17) implies

Tim YF (Y1, Y1) = €,
thus

W’lbl—{ICl)O Fg(yn(k)—l’ ym(k)—l) =1,
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which is a contradiction with

im Fg(Ynk)—1, Ym@k)-1) = €

m—r 00

From the above discussions, we get that (3.8) holds. Therefore, the sequence
{zm} = {9ym} is a Cauchy sequence in ¢gY. Since gY is complete, then there exist
w,u € Y such that w = gu, and the following equalities hold:

lim  dy(z,,w) = dy(w,w) = lim dy(xp,z,) = lm dy(zy, gu) =0. (3.18)

m,n— oo m,n—00 m,n— o0

By (3.1), we have

dp(Tpm, Tu) = dy(Tym—1, Tu) < Y(FGYm-1,%)) Fg(Ym-1,u) < Fg(Ym-1, 1),
(3.19)

where

1
—[dy(gym—1, gu) + |dp(gYm—1, T Ym—1) — dp(gu, Tw)]]

) b12 (3.20)
= 23 (@1, ) + |dy(Tm—1, Tm) — dp(w, Tu)]

Fg(ym-1,u)

Next, we prove b(Tu, w) = 0 in two cases:

Case 1. b > 1. Suppose dy(Tu,w) > 0. Letting lim in (3.19), applying (3.20),

m—r0o0

we obtain

lim inf dy(2,n, T1) < ~—dy(w, ). (3.21)

m—00 - }2

By the triangle inequality, we get dy(w,Tu) < bdy(zy,, w) + bdy(xy,, Tu), which
yields

dp(w, Tu) < bliminf dy(Ym, Tu). (3.22)
m—0o0
Applying (3.22), we have

1
lim infdy(zp,, Tu) > Edb(w,Tu) > 0.

m—0o0
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From (3.21) and (3.22), we get

dy(w, Tu) < %db(w,Tu) < dy(w, Tu),

this is a contradiction, therefore dy(7Tu,w) = 0.

Case 2. b = 1. Taking lim in (3.20), and taking b = 1 into account, we obtain
m—r0o0

Hm Fg(ym-1,u) = dp(w, Tu). (3.23)

m— 00

On the other hand, from (3.1), we have

db<w7 TU’) < db(w7 xm) + db(xﬂ”u T'LL)
= dp(w, Tpn) + dp(T Ym—1, Tw)

< dp(w, ) +Y(Fg(Ym1, ) Fg(Ym—1, 1) (3.24)

< dp(w, ) + Fg(ym—1,u).

Letting n’1L1~>Héo in (3.24), by (3.23), we get %%W(Fg(ym—la u) =1,

hence H}Li_rgo'y(Fg(ym_l,u) = 0, by (3.23), we get dy(Tu,w) = 0. The above two
cases mean dp(7Tu, w) = 0, which implies Tu = w, thus Tu = w = gu. Therefore,
T and ¢ have a coincidence point u, and w is a point of coincidence of T and g.
By Lemma 3.3.1, we get dp(w,w) = 0. Suppose that w; is also a point of co-
incidence of 7 and ¢, then we can find u; € Y suchthat Tu; = w; = guy
and dy(wy,w1) = 0. Now, we prove dy(w,w;) = 0 by contradiction. Suppose

dy(w,wy) > 0, applying (3.1), we have

dy(w, wy) = dp(Tu, Tuy) < y(Fg(u,ur))Fg(u,ur) < Fg(u,uy), (3.25)
1
where Fg(“’ ul) = ﬁ[db(guvgl“) + ’db(Q'LL, TU) - b(gula Tul)H
1
= ﬁ[db(w, wy) + |dy(w, w) — b(wy, wy)]] (3.26)
1
- _db(wvwl)
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From (3.25) and (3.26), we obtain

1
dy(w,wy) < ﬁdb(w,wl),

which is a contradiction, thus dy(w,w;) = 0, which implies w = w;, therefore T
and g have a unique point of coincidence. Moreover, T and g are weakly compati-
ble, then we have Tw = gw. Let Tw = gw = v. From the uniqueness of the point
of coincidence, we have Tw = gw = v = w, that is, Tw = gw = w. Therefore, T
and g have a unique common fixed point. O

Letting g = Iy (identity mapping) in Theorem 3.3.5, we can get the following.

Corollary 1.
Let (Y, dy) be a complete b-metric-like space with coefficient b > 1, and 7 : Y — Y

be a mapping. If there exists v € C' such that
dy(Ty, Tz) <~(F(y,2))F(y, 2),
for any y, 2z € Y, where
F(y,2) = 35ldb(9, )+ ldo(y T) = do(z, T2)]),

then 7 has a unique fixed point. [25]

Taking b = 1 in Corollary 1, we have the following.

Corollary 2.
Let (Y,0) be a complete metric-like space and 7 : Y — Y be a mapping. If
there exists v € C' such that

o(Ty, Tz) <~(F(y,2))F(y,z) forany y,z €Y,

where

F(y,z) =0(y,2) +|o(y, Ty)o(z, Tz)l,

then 7 has a unique fixed point. [25]



Common Fixed Point Theorems on b-metric-like Spaces 42

Taking b = 1 in Theorem 3.3.5, we have the following.

Corollary 3.
Let (Y, d,) be a b-metric-like space and 7,9 : Y x Y — Y be two mappings with
TY C gY and gY is complete. Suppose that there exists v € C' such that

dy(Ty, Tz) <v(Fgly, 2))Fgly, 2),

where

Fg(y,z) = dy(gy, 92) + |du(gy, Ty) — dp(92, T 2)|,

then 7 and ¢ have a unique point of coincidence. In addition, if 7 and ¢ are

weakly compatible, then 7 and g have a unique common fixed point. [25]

Now, we use an example to illustrate the validity of our main result.

Example 3.3.1.
Let Y = {0,1,2}. Define d, : Y x Y — R by dy(0,0) = 0, dy(1,1) = 3, dy(2,2) =
1, db(O, 1) = db(l, 0) = 8, db(O, 2) = db(2, 0) = 1, db(l, 2) = db(2, 1) =4. Itis casy

8

to prove that (X, d,) is a complete b-metric-like space with coefficient b =

Consider T:Y - Y asT0=0, T1 =2, T2=0. Take

ot

1
s s>0,

1 -

Y(s) = 1+100
g, SZO.

By the following cases, we prove

do(Ty, T2) <v(F(y,2))F(y,z) for any y,2 €,

where
1
e b_2

Case 1: (y,2) = (0,0), (y, 2) = (2,2), (y,2z) = (0,2). Since

F(y, z) [dy(y, 2) + |dy(y, Ty) — b(2, T 2)]].

dy(T0,70) = dy(0,0) = 0, dy(T2,72) = dy(0,0) = 0,dy(T0,T2) = dy(0,0) = 0,



Common Fixed Point Theorems on b-metric-like Spaces 43

then
db<Ty7T’Z> < ’Y(F(y,Z))F(y,Z),

holds for (y, z) = (0,0), (y,2) =(2,2), (y,z) = (0,2).
Case 2: (y,z) = (0,1). We get

dy(70,7T1)=dy(0,2) =1,

and

25 300
F(0,1) = =2 [dy(0, 1) +[dy(0,T0) = d(1, T[] = 77,

hence

dy(T0,7T1) =1 <~(F(0,1))F(0,1) = <1+(%) (%)> (36%0) :%'

Case 3: (y,2) = (1,1). We get

dy(T1,T1) = dy(2,2) = 1

and

221 0(1,1) 4+ |du(1, T1) — dy(1, T[] = =2,

F(1,1) = —
(1.1) 64 64

hence

@Uiﬂiy:1<wFﬂJDFOJ>=(T:E%7@§>(gD::%%

Case 4: (y,2) = (1,2). We get
dy(T1,72) =dy(2,0) =1,

and

25 175
Fﬂﬁm::61MAL2)+Mh0771)—dMZ7?ﬂ}:-az,

hence

@ULTm:1<7wa»ﬂQU:(1+(SN£%)(gj>:g$.

100

From the above discussions, we know that

dy(Ty, Tz) <y(F(y,2))F(y, z) for any y,z € Y,
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where
1
Py, z) = 3ldo(y, 2) + ldu(y, Ty) — bz, T2)]].
By Corollary 1, we obtain that 7 has a unique fixed point, 0 is the unique fixed

point of 7. [25]



Chapter 4

Common Fixed Point Theorems

on Extended b-metric-like Spaces

This chapter is the extention of the results presented in [25]. In the start of this
chapter we introduced extended b-metric-like spaces and some other definitions

which will be used in the main result.

4.1 Extended b-metric-like Space

This section comprises of a very important generalization of b-metric-like space

known as extended b-metric-like space.

Definition 4.1.1. Extended b-metric-like Space

Consider aset Y which is non-empty and p : Y x Y — [1,00). A mapping
dy, : Y xY — [0,00) is said to be an extended b-metric like if for all yq, 9,93 € Y,
the following conditions are satisfied

(dpul) = dopp(y1,92) = 0 = y1 = yo;
(dpp2) = dop (Y1, Y2) = dpp(y2, ¥1);
(dop3) = dp(y1,y3) < (1, y3) [dou (Y1, v2) + dou (Y2, y3)],

then (Y, dp,) is known as extended b-metric like space.
45
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Remark 4.1.1.

(1) It is worth to mention that b-metric-like space is a special case of extended
b-metric space when p(yq,y2) = b with b > 1.

(2) The metric-like space is a special case of extended b-metric-like space when

w(yr,y2) = b with b = 1.

Example 4.1.1.
Let Y ={1,2,3,...} and dp, : Y x Y — [0, 00) defined as

dby(ylayZ) = (y1 — 3/2>2'

Consider a function p: Y XY — [1,00) defined as

1,92) —
Y1+ Y2

then (Y, dp,) is an extended b-metric like space.
(dp,1) and (dp,2) are obvious.

(dp,3) : To prove

oy (Y1, y3) < (Y1, ys) (o (Y1, y2) + dou (Y2, y3)],
we proceed as follows:

o (y1,y3) = (11 — ys)?
< [y = 92)” + (y2 — y3)*]

<2[(y1 —v2)? + (2 — y3)?]
< Y1+ y3 + 2
Y1+ Y3

= 1(y1, y3) [duu(y1, y2) + dou(y2, 43)]

(Y1 — 12)* + (2 — 3)?]

hence proved that it is an extended b-metric-like space.

Example 4.1.2.
Consider aset Y= [0, 00) and dy,: Y X Y= [0, 00) and is defined as

(31, 92) = {max(y1, y2)}°.
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Consider a function p: Y X Y — [1,00) defined as

w(y1,y2) = 2y1 +y2 + 2,

then (1, dp,) is an extended b-metric like space.
(dp,1) and (dp,2) are obvious.

(dp,3) = To prove dp,(y1,y3) < p(y1,ys) {dpu(y1, y2) + dpu(y2,y3)}, we proceed as

follows:

{max(y1, y3)}* < {max(y: +y2), (2 +y3)}°
< {max(y1,92) + (y2,93)}”
< {max(y1,ya) + max(ys, ys}”
< 2 [{max(y1, y2) }* + {max(y2, y3)}°]
< (2y1 + y3 + 2) [{max(y1, y2) }* + max{(ys, y3) }’]

= dbu(yla ys3) < M(yhyi’»){dbu(yla Yo) + db,u(y%y?))}a

hence proved that it is an extended b-metric-like space.
Some necessary definition and concepts are given in upcoming discussion. These

concepts will help in proving the main result.

Definition 4.1.2.
Consider an extended b-metric like space (Y, dp,). It induces a topology 74,, on Y

based on the family of open ds,-balls

Bdw(ya 6) = {Z eyY: ’db,u(y72) - dbu<y7y)| < 6}7

foralle >0and y €Y.

Definition 4.1.3.
Assume that (Y, dp,) is an extended b-metric-like space and p: Y x Y — [1,00).

Consider a sequence {y,,} in Y and y € Y, then
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(1) {ym} is said to converge to a point y € Y, iff we have
nllﬁnéo dbu(?/» ym) = dbu(ya y)
(2) {ym} is a Cauchy sequence if and only if

im  dy, (Y Yn),

m,n—00
exists.

(3) An extended b-metric like space (Y, dy,) is called complete iff each sequence

{ym} in Y which is Cauchy in Y is convergent to y € Y that is

lim dlm(ym7yn) - db,u(y7y) = rrlll—{%o dbu(ymay)'

m,n—00

Definition 4.1.4. 7,z-Contraction

Let (Y, dp,) be an extended b-metric-like space with coefficient p: Y x Y — [1, 00)
and 7,9 : Y — Y betwo mappings. Wesay that the pair (7,g) is a Typ-
contraction of Geraghty type if there exists v : [0,00) — [0,1), which satisfy
the condition

lim v(¢t,) =1= lim (¢,) =0,

m— 00 m—0o0

such that

dou(Ty, T) < v(Fgly,2))Fg(y, z) (4.1)

for all y, z € Y, where

Fg(y,z) =

(e (98- 92) + o9y, Ty) = (9, T2)1]

Lemma 4.1.1.
Let (Y,dy) be an extended b-metric-like space, 7 and g be self-mappings on Y
such that the pair (7, g) is a T,p-contraction of Geraghty type. If w € Y is a point

of coincidence of 7 and g, then dp,(w, w) = 0.
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Proof.
Suppose that w € Y is a point of coincidence of 7 and g, then there exists v € Y
such that Tv = gv = w.

Assume dy, (w,w) > 0, we get

dp (W, w) = dp,(Tv, Tv) < v(Fy(v,v))Fy(v,v)

since

1

F0,0) = o lla0,0) + oy (g0, T0) = doy 0. T
= mdbu(wa w),
then we have
dy(w, w) < (y%z)zdb(w,w),
which is a contradiction, hence dp,(w, w) = 0. O

4.2 Main Result

Theorem 4.2.1

Let (Y, dp,) be an extended b-metric-like space with coefficient p1: Y xY — [1, 00),
and 7,¢ : Y — Y be two mappings with 7Y C ¢gY and ¢Y is complete. Then T
and ¢ have a unique point of coincidence if:

(i) If the pair (7, g) is a T,p-contraction of Geraghty type.

(ii) For J € (0,1) and for an arbitrary y, € Y, m}grgoou(ym,yn) < %} with z,, =
9Ym = Tlym-1-

In addition, if 7 and g are weakly compatible, then 7 and g have a unique common

fixed point.

Proof.
Consider an arbitrary yo € Y, since TY C gY, we can construct a sequence {x,,}
by

Tm = GYm = T Ym—1 (4.2)
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for all m € Z*. Now, we prove that 7 and ¢ have a point of coincidence. If there

exists some mg € Z* such that
Aoy (Tmg, Tmo+1) = 0, then 0 = Timgt1,

which implies gy, = T Ym,, thus, z,,, is a coincidence point of 7 and g, so vy =

9Yme = T Yme 1s a point of coincidence of 7 and g. We assume that
Ao (T, Tmy1) > 0 for all m € Z7F.

From (4.1), we have

dbu($m7 xm—‘rl) - dbu<Tym—1a Tym) (4 3)

< ’Y(Fg(ym—h ym))Fg(ym—la ym)

where
Fy(Ym—1,Ym) = !
S I Yty Yo )}
(b (9Ym—1, 9Ym) + 1o (GYms T Ym—1) — dup(GYms T ym)|]
1

B {1 (Ym—1,Ym) }? (o (Tm—1, Tm) + |dpp(Tim—1, T) — dpp(Trmy Trng1) ]

Assume that there exists my € Z™ such that

db,u(xmo—lu xmo) S db,u(xmo7 xmo)
By (4.3), we get

dby<xmo7 xmo+1> = dbu(TymO*lu Tymo)
< A(F9(Ymo—15Ymo ) ) F G (Ymo—1, Ymy)

< Fg(ymo—laymo)
B 1
{1(Ymo—1, Ymo) }2

[dbu(gymo—h gymo) + |dbu(gymo—1a 7dyrrzo—l) - dbu(gymm Tymg)H
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1
B {/“L(ymo—17ym0)}2
[dbu<xm0*1? xmo) + ’db#(xMO*l? xmo) - dbﬂ(xmm xmo+1)’]
1
{M(ymo—hymo)}Q
[dbll(xﬂ”m*l? xmo) - dbu<xm0*17 $m0> + dbu(zmm $m0+1)]
B 1
{1 (Yo Ymo

)}2 db#(l‘mo’ xmo-&-l))

S dbu(xmm xmoJrl)
which is a contradiction. Thus, we obtain

Aoy (Timg—1> Tmg) > dpp(Timg, Tmg41) for all m € Z7F.

(4.4)
Therefore, there exists ¢ > 0 such that
Im dpp(@Tmg—1, Tm,e) = ¢
m—ro0
(4.5)
(4.3) and (4.4) yield that
db,u(xmv xm+1) - db,u(Tym—h Tym>
< AEGYm—1,Ym)) F9(Ym—1, Yom)
1
= 2dp, (1, T ) Ao (Tns T, .
| oo )
1
(Y1 Y 1o (2dbu($m—1v$m) - dbu(xma Trmy1)) (4.6)

1
=7 |:{/“L<ym—1; ym)}2 (2dbu($m71, x””) o db#(xma xm+1)):| .

<2db,u(xm—17 xm) - db,u(xma 'rm—l—l))

< 2db,u(xmfl7 xm) - db,u<xmv xm+1)

Taking lim in (4.6), we get

m—ro0

lim ~ 2db,u($mfla xm) - dbu(-rm; xm+1)

—1
m—00 {(Ym—1, Ym) }?
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hence,
lim 2db,u<xmfla xm) - dbu(-zmvxm+1> —0.
m—500 {1(Ym—1,Ym)}
On the other hand,
l. 2dbu<xmfla xm) - db,u(mmv l'erl) o c
im 5 = 2
m—+00 {1(ym—1, ym } Jim {41 (ym—1, Y}
therefore ¢ = 0. Hence,
lim dpy(Tm—1,Tm) = 0. (4.7)
m—0o0
Now we prove that
lim  dp, (@, ) = 0. (4.8)
n,Mm—00

If (4.8) does not hold, then there exists € > 0, for which we can find two subse-
quences {Z,;} and {ym()} of {ym}, where n(j) is the smallest index for which
n(j) > m(j) > j with

oy (2n(7), 2m (7)) 2 €, Aoy, ()15 Tm(])) < € (4.9)
Applying (4.1) and (4.9), we have

€ < dpu(Tn(j), Tm(j))
= dou (T Ynj)—1> T Ym(j)-1) (4.10)
< VEy W) -1 Ym(i)-1) Fo (Ui -1, Ym(i) 1)
< Fy(Yn(j)—1: Ym(j)-1)5

where

1
Yn(5)—15 ym(j)fl)}z '

Fg(yn(j)—h yTn(j)—l) = {/L(

[y (9Yn() -1 GYm)-1) + Do (9Ym() =1 TYm()—1) = Do (GYm(—1> T Ym(i)—1)|]
1

{M(yn(j)—17 ym(j)—l)}2 .

[ (a1, Tmi)—1) + |dop(@ni) -1, Tn() = dop(Tms) -1, i) |] -
(4.11)
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Next we discuss two cases.
Case 1: Case of 1(Yn(j)—1,Ym(j)-1) > 1. Applying (4.7), (4.10), and (4.11), we

obtain

1
e < liminf Ao (Tn() =15 Tm(i)—1)- (4.12)
m=00 { 1(Yn(j)-1, ym(j)—l)}2 pn) )

Moreover, from (4.9), we have

dbu(xn(]‘)*h Im(j)fl) < M(yn(j)fly ym(j)71>dbu(l'n(j)fla $m(j))+
1(Yn()~1> Ym()~1) dop(Tm()s Tm(j)—1)
< /J/(yn(j)—la ym(j)—1)€+

1(Yn ()15 Ym()—1) Do (Tm(G), Tm(j)—1)-

Taking liminf in the above inequalities, we have
m—00

m—0o0

. €
lim inf dy (Tn(j)—1, Tm(jy-1) > i (4.13)

(4.12) and (4.13) imply € < Je, which is a contradiction.

Case 2: Case of ((Yn(j)—1,Ym(j)-1) = 1. From (4.9), we have

€ < dpu(Tn(s), Tm(j))
< dpu(Tn(j), Tn(—1) + dop(@n()-1, Tm()-1) + Ao (Tm()-1, Tn(s)) (4.14)
< d (T Tn()-1) + dop(Tnig) 15 Tm(i)) + 2o (Tm(i)—1, Tm())
< db,u(xn(k)v Tn( )—1> +e+ 2dbﬂ(xm(j)_1’ xm(J))
By (4.7), taking liminf in (4.14), we have
m—00
lgnniio%f Ao (T (j)—15 Tm(j)—1) = € (4.15)
Since p(Yn(j)-1, Ym)—1) = 1, by (4.10) and (4.11), we have
€ < Y(EGWYnk) =15 Ymk)=1)) F9(Ynk)—15 Ym(x)—1)
(k) (k) (k) (k) (4.16)

< db,u,(xn(k)—la xm(k)—l) + |db,u(xn(k)—17 xn(k)) - db/.t('rm(k)—17 xm(k))|
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(4.7), (4.15) and (4.16) yield

1inHLi£f7(Fg(yn(k)—1, Ym()—1)) F 9 Un(i) =1, Ym()—1) = € (4.17)

From (4.11) and (4.15), and taking z4(yy(j)—1, Ym(j)—1 = 1 into account, we get

lim inf Fg(yn(k)—la ym(k)—l) =€

m—r 00

which together with (4.17) implies

hmniiogf ’Y{Fg(yn(k)—la ym(k)—l)} =6

thus

I%rrigf Fg(yn(k)fl, ym(k)q) =1,

which is a contradiction with

lim inf Fg(yn(k)fla ym(k)*l) =€

m—ro0

From the above discussions, we get that equation (4.8) holds. Therefore, the se-
quence {x,,} = {gym} is a Cauchy sequence in gY. Since gY is complete, then

there exist w,u € Y such that w = gu, and the following equalities hold:

m}%:gloo Ay (T, w) = dpy(w, w) = mléIiloo Ay (T, T) = m,lgbr—I}oo dp(Tm, gu) = 0.

(4.18)

By (4.1), we have

Aoy (T, T1) = dyp(TYm—1, Tu) < Y(Fg(Ym-1,1)Fg(ym-1,u) < Fg(ym-1,u),
(4.19)

where

1
Fg(ymflyu) = m[dbu(gym—lagu) + |dbu(gym—1,Tym,1) — dbu(gu7TU)|]
1
- m[dbu(zm_l’w) + [dy (T -1, ) — dyu(w, Tu)l].

(4.20)
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Next, we prove dp,(Tu,w) = 0 in two cases:

Case 1. pt(Ym—1,u) > 1. Suppose dy,(Tu,w) > 0. Letting lim in (4.19), applying
m—r0o0

(4.20), we obtain

minf dy, (2, Tu) < J2dy,(w, Tu). (4.21)
m—r0o0
By the triangle inequality, we get

db,u(w? Tu) < :u(ymflv u)dbu(xmn w) + /‘(ymfla u>db#($ﬂw TU),
which yields

dbu (w, Tu) S lim inf ,U(ymfb u)dbu<ym7 Tu)
Lo (4.22)
<3 hmHLio%f Ay (Ym, Tw)

Applying (4.22), we have

lim inf dp, (@, Tu) > Jdp,(w, Tu) > 0.

m—00

From (4.21) and (4.22), we get

J2dy,,(w, Tu) > Jdp,(w, Tu),

= Jdbu(w, TU) > dbu(w, Tu),

this is a contradiction, therefore dy,, (7T u,w) = 0.

Case 2. p(Ym-1,u) = 1. Taking m — oo in (4.20), and taking pu(ym—1,u) = 1

into account, we obtain i, Fg(Ym_1,u) = dy,(w, Tu). (4.23)

m—ro0

On the other hand, from (4.1), we have
dpp(w, Tu) < dpp(w, Tp,) + dpp (@, Tu)
= dpp(w, Tm) +d Tym— ,Tu
by (W, ) + i 1, Tu) (4.24)
< dpyp(w, Tm) + 7 (FG(Ym1, w) FG(Ym-1, 1)
(w, )

< dpp (W, ) + Fg(Ym—1, ).
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Letting lim in (4.24), by (4.23), we get

m—00
lim y(Fg(ym-1,u) = 1.
m—0o0

Hence,

lim Fg(ym-1,u) =0,

m—r0o0

by (4.23), we get
dp(Tu,w) = 0.

The above two cases mean dy, (7w, w) = 0, which implies Tu = w, thus Tu =
w = gu. Therefore, 7 and ¢ have a coincidence point u, and w is a point of coin-
cidence of T and g¢.

By Lemma 4.1.1, we get dp,(w, w) = 0. Suppose that w; is also a point of co-
incidence of 7 and ¢, then we can find u; € Y such that Tu; = w; = guy
and dp,(wy,w1) = 0. Now, we prove dp,(w,w;) = 0 by contradiction. Suppose

dp,(w, wy) > 0, applying (3.1), we have

o w,01) = dy (T, Ter) < 7(Fgu, ) Fy(u, ) < Fgluyw),  (425)
where
Fo(u:0) = s [l g0, 1) + . T) = diy . T
= iy (0 00) i (0,10) = o, )| (4.26)
1

)}de(w,wl)

{IU’(wa wn
From (4.25) and (4.26), we obtain

dpy(w, wy) < deu(wwl),

which is a contradiction, thus
dpp(w,w1) =0, =  w=uw,

therefore 7 and g have a unique point of coincidence. Moreover, T and g are weakly

compatible, then we have Tw = gw. Let Tw = gw = v. From the uniqueness
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of the point of coincidence, we have Tw = gw = v = w, that is, Tw = gw = w.
Therefore, T and g have a unique common fixed point. O
Letting g = I, (identity mapping) in Theorem 4.2.1, we can get the following.

Corollary 4.
Let (Y, dp,) be a complete extended b-metric-like space and p1 : Y XY — [1, 00), and
T :Y — Y be amapping. If there exists v € C such that

dou(Ty, T2) <v(F(y,2))F(y,z) forany y,z €Y,

where

F(y, z) [dou(y, 2) + |dou(y, Ty) — du(2, T2)]],

1
 A{uly, 2)}?
then 7 has a unique fixed point.
If we take u(y, z) = b in corollary 4, we have the following.

Corollary 5.
Let (Y,dy) be a complete b-metric-like space and b > 1, and 7 : Y — Y be

a mapping. If there exists v € C such that
dy(Ty, Tz) < (F(y,2))F(y, 2) forany y,z €Y,

where

F(y,2) = 35ldblu:2) + ol Ty) = (=, T=)]),

then 7 has a unique fixed point.

Taking b = 1 in Corollary 5, we have the following.

Corollary 6.
Let (Y,0) be a complete metric-like space and 7' : Y — Y be a mapping. If
there exists v € C' such that

o(Ty,Tz) <~(F(y,2))F(y,z) forany y,z €Y,
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where

F(y,2) = o(y, 2) + oy, Ty)o(z,Tz)|,

then 7 has a unique fixed point.

If we take u(y,z) = b in Theorem 4.2.1, we have the following.

Corollary 7.

Let (Y,d,) be a b-metric-like space with coefficient b > 1, and 7,9 : ¥ — Y
be two mappings with 7Y C ¢Y and gY is complete. If the pair (7,g) is a Typ-
contraction of Geraghty type, then 7 and g have a unique point of coincidence.
In addition, if 7 and ¢ are weakly compatible, then 7 and ¢ have a unique com-

mon fixed point.

Taking b = 1 in corollary 7, we have the following.

Corollary 8.
Let (Y,0) be a metric-like space and T,¢g : Y X Y — Y be two mappings with
TY C gY and gY is complete. Suppose that there exists v € C' such that

o(Ty, Tz) <~v(Fg(y,2))Fg(y,2),

where

Fg(y,z) = o(gy,92) + |o(gy, Ty) — o9z, T=2)]|,

then 7 and g have a unique point of coincidence. In addition, if 7 and g are weakly

compatible, then 7 and ¢ have a unique common fixed point.

Example 4.2.1.

Let ¥ = {0,1,2}. Define dy, : ¥ x Y — R by dy,(0,0) = 0, dyu(1,1) =
3, dpu(2,2) =1, dpu(0,1) = dpu(1,0) = 8, dpu(0,2) = dp,(2,0) = 1, dpp(1,2) =
dy.(2,1) = 4, be a complete extended b metric like space with 6§ : Y x Y — [1, 00)

by
_ytz+1

9(y, 2) s

Consider 7 :Y — Y as

T0=0, T1=2, T2 =0.
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Take

By the following cases, we prove
dbM(TyaTZ) S W(F(yaz»F(ya Z) fOI‘ any ya z 6 Y)

where

1
{0y, )P
(case 1): (z,9) = (0,0)

F(y, z) = (Ao, 2) + dou(y, Ty) — dpu(2, T2)]-

dbu(Tl'v Ty) = dbu(Tov Tl)
= dp,(0,0)
=0

F(z,y) = F(0,0) =0

1(F(0,0)) = 3

dp,(70,71) =0
- V(F(Ov 0))F(07 0)

(case 2): (z,y) = (1,1)

do (T2, Ty) = dy(T1,T1)
= dy,(2,2)
=1
F(z,y) = F(1,1) = 4

25

YWFLD) = 2
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dy,(T1,T1) =1
<~(F(1,1))F(1,1)
20

13

(case 3): (z,y) = (2,2)

Ay (T, Ty) = dpu(T2,T2)

= dp,(0,0)
=0
16
625
Y(F(2,2)) = 629

dp(T2,72)=0

<(F(2,2))F(2,2)
400
~ 629

(case 4): (z,y) = (0,1)
dpp (T, Ty) = dp, (70, 71)
= dpu(0,2)

=1

F(z,y)=F(0,1) =3

100

FO1) = 153

dp,(70,7T1) =1

< Y(F(0,1))F(0,1)
300
~ 103
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(case 5): (z,y) = (0,2)

dbu<Txa Ty) = dbM<T07 T2)
= dp,(0,0)
=0

Flr.y) = F(0.2)= 5

225

7(F(272)) = E

dp,(70,72) =0

< A(F(0,2))F(0,2)
200
=27

(case 6): (z,y) = (1,2)

dbu(Txv Ty) = dbu(Tlv TQ)
= dpu(2,0)
=1

63
F =F(2,2)=—
($7y) ( Y ) 16
1600
F(2,2) = —=

dp(T1,72) =1

<y(F(1,2))F(1,2)
6300
1663

From the above discussions, we know that

dou(Ty, Tz) < (F(y, 2))F(y, 2) forany y,z €Y,
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where
1

{uly,2)}?

By Corollary 4, we obtain that 7 has a unique fixed point, 0 is the unique fixed

F(y, z) = (Ao, 2) + dou(y, Ty) — du(2, T2)].

point of T .



Chapter 5

Conclusion and Future Work

The dissertation comes to its end in the following manners:

e The dissertation is started with brief introduction, pointing out the history

and work done by many mathematicians related to the article.

e Assupportive material, some abstract spaces like metric space, partial metric
space, b-metric space and metric-like space, convergence, completeness and

Cauchy criteria are elaborated with proper examples.

e A section is mentioned for brief discussion on fixed point theory. This helps

to understand the existence and uniqueness of the fixed point in main results.

e Different mappings are also elaborated for better understanding, that are

used in the main results.

e The idea of common fixed point in the sense of metric spaces, b-metric spaces
and metric-like spaces under specific contraction mappings is demonstrated.
The work of Yu et al. [25] “Common fixed point theorems for 7, -contraction

in O-metric-like spaces” is investigated with detailed description.

e One result in the setting of extended b-metric-like spaces is established. The-

se results are the extensions of the results presented by Yu et al. [25].

e In future,
63
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i. The application of given result can be provided.

ii. Using the idea of extended b-metric-like space, one can establish further

results.

iii. The idea of new-extended b-metric-like space can be incorporated.
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